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Abstract 
 

The paper proposes a linear representation of tree 
structures in order to evolve complex fuzzy rule 
sets for solving classification problems. In 
particular, linguistic rules are evolved, where the 
condition part of a rule can have an arbitrary 
structure of conjunctions and disjunctions. We 
describe an efficient rule representation scheme, 
which uses a genetic algorithm. The method is 
tested with a number of benchmark data sets and 
some results are reported. 

1 INTRODUCTION  
The problem of classification has been studied 
extensively in machine learning (Holte,93; Michalski,98; 
Weiss,91), and has recently received a lot of attention in 
the emerging area of Data Mining (or Knowledge 
Discovering) (Han,00; Michalski,98). The problem of 
classification can be stated as follows: Given a set of 
classified elements (training set), build a system 
(classifier) that is capable of categorizing unlabeled 
elements (testing set) where the label of an element 
represents the class to which it belongs.  

There exist many approaches for solving classification 
problems (Weiss,91): statistical methods, decision trees, 
neural networks, rule-based methods, etc.; and all of them 
have some advantages and disadvantages (Curram,94; 
Lim,97). The choice of a particular method depends, 
however, on factors like the kind of problem to be solved, 
the resources available, etc.   An important factor in a 
good number of problems is the comprehensibility of the 
resulting classifier, that is, the possibility of 
understanding the resulting model and extracting useful 
knowledge to understand the modeled system. 
Approaches like neural networks and many of the 
statistical methods have very little comprehensibility 
(Weiss,91). 

Another method, Fuzzy logic has been applied 
successfully (Fidelis,00; Gonzalez,98; Ishibuchi,00, 97 
and 95) to extract comprehensible classifier knowledge 
from data in the form of linguistic rules (in this context, 
the linguistic is synonym of fuzzy).  The fuzzy method 
has the ability to represent imprecise knowledge and the 
capability of dealing with noisy data. 

Moreover, there have been several works that have 
attempted to produce classifier rules (fuzzy and non-
fuzzy) using evolutionary techniques (Bojarczuk,99; 
Ishibuchi,95; Liu,00). One of the main problems 
encountered in this approach, is the representation of the 
condition part of a rule in the chromosome. Since the 
condition part can be a very complex logical expression, 
there is not a natural way to represent it as linear string. 
However, there are two main approaches that have been 
studied (De Jong,91):  

• Linear representation of the condition part  

In some approaches (De Jong,91; Fidelis,00; 
Gonzalez,1998; Ishibuchi 00 and 95; Liu,00), the 
condition part was restricted to be a conjunction 
of one or more logical terms (tests). This makes 
the representation of the condition as a linear 
string. But, in general, a single rule is not 
sufficient enough to characterize a class; rather a 
set of rules is necessary. In other approaches 
(Giordana, 93), condition structures were 
predefined and only some parameters of rules 
were evolved. Figure 1(a) shows an example of 
such cases. 

• Tree representation of the condition part 

In this approach, it was possible to represent 
arbitrarily complex conditions using Genetic 
Programming, with a substantial increase in the 
implementation complexity (Bojarczuk,99; 
Folino,99; Freitas,97; Tunstel,96). Figure 1(b) 
gives an example of tree representation. 

 



 

 

Figure 1: Conventional approaches to represent condition 
part of a rule. (a) a linear representation (b) a tree 
representation. 

 

The purpose of the work presented in this paper, is to 
explore a new representation for linguistic classifier rules, 
which tries to combine the linear and tree methods, 
exploiting the advantages of both. In this approach, we 
evolve arbitrarily complex rules using a novel 
representation of tree structures in order to apply a genetic 
search. 

The subsequent sections are organized as follows. Section 
2 briefly describes the approach to perform classification 
tasks using fuzzy IF-THEN rules. Section 3 presents the 
proposed fuzzy rule representation scheme, Section 4 
describes experiments and the analysis of results, and 
Section 5 draws some conclusions.  

2 CLASSIFICATION USING 
LINGUISTIC RULES 

In general, a linguistic classifier rule has the following 
form: 

IF  x1∈S1 op1 x2∈S2 ... opn-1 xn∈Sn THEN Class m 

where, 

x  i ∈[0.0,1.0], is an attribute or linguistic variable  

Si ∈{S,MS,M,ML,L}, is a fuzzy set 

opi ∈{AND, OR}, is a Fuzzy-Boolean operator  

 

In this work, the attribute values are normalized in the 
interval [0.0,1.0] and fuzzy sets are defined by the 
membership functions shown in the Figure 2.  

 

 

Figure 2: Fuzzy sets and membership functions 

 

In our current experiments, we used 5 linguistic values, 
such as S (small), MS (medium small), M (medium), ML 
(medium large) and L (large). However, the method can 
be easily extended to any number of fuzzy values. 

A classifier model can be represented by a set of m rules, 
where m is the number of different classes, that is, each 
class is represented by one, and only one, rule. For 
example, 

R1: IF Condition1 THEN Class C1 

: :     :          : 

Rm: IF Conditionm THEN Class Cm 

In order to classify an unclassified element (x1, ... , xn), 
which is represented by a vector of attributes, the 
condition part of each rule is evaluated using the 
membership functions and the fuzzy-set operators1. Then, 
the rule with the highest value in the condition is selected, 
and the element is classified according to the consequent 
part of that rule: 

 

)},...,({max),...,( 1},..,1{1 ncmcn xxConditionxxClass
∈

=  

 

where, Conditionm(x1, ... , xn) represents the value of the 
ConditionC evaluated for the element (x1, ... , xn), which is 
a real value between 0.0 and 1.0. 

3 PROPOSED APPROACH  
In general, the condition part of a rule corresponds to a 
logic expression, which can be represented by an 
expression tree; a linear chromosome with variable length 
represents this expression tree. 

A standard genetic algorithm with special operators is 
applied to evolve the rules. A GA run evolves a rule, so 
multiple runs are needed to cover all classes in the 
training set. The elements in the training set that belong to 

                                                                 
1 The union (OR) operator is calculated by the function max( , ) and the 
intersection (AND) by the function min( , ) 
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the class of the respective run are considered positive 
examples and the elements that belong to other classes are 
considered negative examples. 

3.1 LINEAR REPRESENTATION OF 
LINGUISTIC RULES 

Since there are different GA runs for each class, we do 
not have to represent the action part of the rule in the 
chromosome; it only represents the condition part. 

Formally, a condition is generated by the following 
grammar: 

(1) <condition> ::= <condition> <operator> 
<condition>  

 | <atomic_condition>   

(2) <atomic_cond> ::= <variable> <rel op> 
<set> 

(3) <operator> ::= AND <prec> | OR <prec> 

(4) <variable> ::= X1|...| xn 

(5) <rel op> ::= ∈ | ∉ 

(6) <set> ::= S | MS | M | ML | L 

(6) <prec> ::= 1 | 2 |...| 8 

 

The tree structure of an expression is generally expressed 
using braces that indicate the order of evaluation of the 
operators. When braces are not used, the default 
precedence of the operators determines the order of 
evaluation. 

In our approach, we introduced precedence values for 
each operator in the representation itself (represented by 
<prec> in the grammar). This precedence value 
indicates the order of evaluation; an operator with a 
higher precedence value is evaluated first. Therefore, it is 
not necessary to have braces or a tree representation to 
express the evaluation order, so the expression can be 
represented by a linear string. 

For example, the condition  

X2 ∈ MS AND2 X1 ∉ S OR1 X3 ∈ ML AND3 X2 ∈ L 

represents the condition expression, as shown in Figure 3: 

(X2 ∈ MS AND X1 ∉ S) OR (X3 ∈ ML AND X2 ∈ L) 

 

Figure 3: Tree representation of a condition expression 

The precedence value of the operator AND2 indicates that 
this operation has to be performed before the operation 
OR1. When two consecutive operators have the same 
precedence value, the left one is evaluated first. 

This scheme allows the representation of arbitrary 
complex conditions; the number of different precedence 
values determines the maximum depth of an expression 
tree. 

Applying the grammar rule (1) multiple times, we get a 
condition with the following structure: 

<ac1> <op1> ... <acn> <opn> <acn+1> 
where 

<aci>: Atomic Condition 

<opi>: Fuzzy Operator 

This condition expression is represented by a 
chromosome with the structure shown in the Figure 4. 

 

Gene1 ... Genen Genen+1 

ac1 op1 ... acn opn acn+1 ** 

var1 ro1 s1 o1 prec1 ... varn ron sn on precn varn+1 ron+1 sn+1 ** 

 

Figure 4: Chromosome representation of the condition. 

 

An Atomic Condition and a Fuzzy Operator compose a 
gene. However, there is an exception in the last gene, 
which is composed of an Atomic Condition, and the last 
part (Fuzzy Operator) is ignored. 

In our implementation, each gene is represented using 16 
bits in the following way: 

• Atomic Condition part: 

o 8 bits to represent the variable (vari) 

o 1 bit to represent the relational operator (ro i) 

o 3 bits to represent the set (s i) 

• Operator part: 

o 1 bit to distinguish between AND and OR (o i) 

o 3 bits to represent the precedence (preci) 

An important characteristic of this representation is that, 
in order to express the genotype, it is not necessary to 
build the expression tree. Instead, the classical parsing 
algorithm, operator precedence parser (Aho,86), can be 
used. This technique allows the evaluation of an 
expression in a very efficient way. The chromosome only 
has to be traversed once, that is, the time complexity of 
the evaluation is O(n), where n is the condition expression 
length.  

The evaluation algorithm based on the operator 
precedence parser can efficiently be implemented (using 
array and stack operations instead of pointer operations). 

   OR 

  AND AND 

X2 ∈ MS X1 ∉ S X3 ∈ ML X2 ∈ L 



This fact along with the compact chromosomal 
representation makes this approach computationally 
inexpensive. 

3.2 FITNESS EVALUATION 

The fitness of each chromosome (rule) is evaluated with 
respect to a set of attribute vectors (training set) to which 
a class has been previously assigned. In each run of the 
genetic algorithm, a rule with different class Ci is evolved. 
Accordingly, vectors in the training set with class part 
equal to Ci are considered positive examples, and the 
elements with class part different from Ci are considered 
negative examples. 

In our approach, the first step is to evaluate the condition 
part of the rule for a given vector. If the result is greater 
than or equal to 0.5, then the condition is true, otherwise it 
is false. Next, the class of the vector is compared to the 
class Ci of the actual run, and four different outcomes are 
possible, shown in Table 1.  

 

Table 1:  Types of the classifications results 

Condition Class Type 

TRUE  Equal True Positive (TP) 

TRUE  Different False Positive (FP) 

FALSE  Equal False Negative (FN) 

FALSE  Different True Negative (TN) 

 

The fitness of the condition is evaluated taking into 
account three objectives: maximize the sensitivity, 
maximize the specificity, and minimize the length of the 
chromosome. The length of the chromosome is penalized, 
because we want to evolve simple rules.  This is an 
important factor that contributes to the comprehensibility. 
The formulas used are as follow:   

 

where MaxLength is the maximum allowable genes in  a 
chromosome, and length is the actual number of genes in 
the chromosome. 

This is a multi-objective problem, and there are different 
ways to deal with this kind of problem (Fonseca, 97). We 
chose to use a weighted sum approach, however, further 
experimentation with other multi-objective optimization 
approaches will be necessary. The wi terms in the fitness 
definition represent the weight values. 

3.3 GENETIC OPERATORS 

The following genetic operators are used:  

• Restricted Crossover: A crossover point is chosen 
between 1 and the minimum of the lengths of the 
two selected chromosomes. The child with minimal 
length is chosen (Figure 5.a). 

• Mutation: A randomly chosen bit is changed as 
used in simple GA’s.  

• Gene Elimination: A gene is chosen randomly and 
eliminated. The length of the new chromosome is 16 
bits shorter than the parent chromosome  (Figure 
5.b). 

• Gene Addition: A random gene is generated and 
added at the end of the chromosome. The length of 
the new chromosome is 16 bits longer than the 
parent chromosome (Figure 5.c).  

 

 

Figure 5: Genetic operators. (a) restricted crossover (b) 
gene addition (c) gene elimination. 

 

However, only one operator is applied each time. The 
operator to be applied is chosen using a uniformly 
generated random number and the probability assigned to 
each operator. 

4 EXPERIMENTATION 
In order to evaluate the performance of the proposed 
approach to extract comprehensible linguistic rules from 
the training data, tests were conducted using publicly 
available data sets (University of California, Irvine, 
Repository of Machine Learning Databases (Blake,98)). 
These data sets are referenced frequently in the 
classification and machine learning literature, and it is a 
well-known standard for testing. 

The data sets used are described in Table 2. The sample 
size s, the number of classes, and the type of attributes are 
shown in Table 2. 
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Table 2: Test Data sets used for experiments 

Attributes  Data 

Set 

Sample 
size 

No. of 
classes Numerical Categorical 

IRIS 150 3 4 0 

VOTE 435 2 0 16 

WINE 178 3 13 0 

4.1 EXPERIMENTAL SETTING 

The data sets with numerical attributes were normalized 
to have all values in a fixed range [0.0,1.0]. The attributes 
of the VOTE data set have 3 possible values ‘YES’, ‘NO’ 
and ‘?’2; these values were codified as 1.0, 0.0 and 0.5, 
respectively, to deal with categorical data. 

A ten-fold testing strategy was employed (Lim, 97), that 
is, the data set was partitioned into ten randomly chosen 
subsets, and each subset was used as a testing set for the 
classifier trained with the remaining subsets.  The score of 
the classifier (correctly classified samples / sample size) 
was calculated as the average score of 10 tests. This 
process was repeated 5 times for each data set and the 
average score was taken. 

A number of GA parameters were tested, and the reported 
results used tournament selection, with a tournament size 
of 4, along with elitism -- the best individual of each 
generation is copied to the next generation. 

GA parameter values: 

Population:  200 

Generations:   200 

Mutation Rate:  0.05 

Crossover Rate:  0.35 

Gene Addition Rate: 0.35 

Gene Elimination Rate: 0.25 

Maximum Length: 50 genes 

Each GA run was initialized with a random population of 
rules with five genes. The weights used in the fitness 
function were w1=0.45, w2=0.45 and w3=0.1, to give more 
importance to sensitivity and specificity terms. In our 
empirical study, these values produced good results in 
different experiments; however, more experimentation 
will be necessary to define criteria for tuning parameter 
values. 

4.2 RESULTS AND ANALYSIS 

The average score and the variance in data sets are 
reported in Table 3. In particular, the value 94%+/-0.3 in 
the first row illustrates that the experimentations of the 
IRIS data set produce an average score of 94.5% with a 
variance of 0.3%. Although quantitative comparisons with 
other methods are useful, and desirable, our results 
                                                                 
2 The character ‘?’ means a neutral vote, neither YES or NO. 

compare well to those reported in the literature (IRIS 
(Folino,99; Gonzalez,1998; Ishibuchi,95; Liu,00), VOTE 
(Folino,99; Lim,97), WINE (Ishibuchi,00)).  

 

Table 3: Results of average prediction accuracy 

Data Set Score 

IRIS 94.5% +/- 0.3 

VOTE 94.7% +/- 0.1 

WINE 93.9% +/- 0.7 

 

The most important objective of our fuzzy rule 
classification was to obtain comprehensible rules. The 
proposed approach was able to evolve simple rules, and 
the following set of rules were evolved for IRIS data set 
in a typical run: 

R1: if  X3  ∈ S  OR6  X2 ∈ S  THEN  Class 1  

R2: if X3  ∈ M THEN Class 2 

R3: if  X3 ∈ ML OR ( X2 ∈ ML AND X0 ∈ M) OR X3 ∈ L                                 
THEN Class 3 

There are two key points to be noted in this  set of rules:  

- The simplicity of the rules: The system was able to 
evolve short rules. 

- The feature selection: The system was able to 
select attributes that contribute to distinguishing a 
class, discarding other attributes. 

These improved results were accomplished due to the 
evolutionary pressure towards shorter rules. Figure 6 
shows the evolution of the fitness and the average rule 
size of the population in a particular run of the GA using 
the IRIS data set. It shows how the size of the rule 
converges to an optimal value, while the average fitness 
of the population increases. 

 

 

Figure 6: Fitness and size of the rule 2 evolution for the 
IRIS data set (the fitness is multiplied by 5) 
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The optimal size of a rule depends on the complexity of 
the class that it intends to model. Figure 7 shows the 
change in the average size of three rules for the IRIS data 
set. The convergence value of each rule is different and it 
can be interpreted as a measure of complexity of the class 
that it represents. 

 

Figure 7:Evolution of the rule size for the IRIS data set. 

 

Figure 8 presents the rule size behavior for the WINE data 
set. The convergence values are greater than those of the 
IRIS data set. This indicates that the WINE data set is 
more complex than the IRIS data set from the 
classification point of view. 

 

 

Figure 8: Evolution of the rule size for the WINE data set. 

 

In some cases, there is a tradeoff between simplicity and 
accuracy. Table 4 shows the scores for the previously 
shown set of evolved rules for the IRIS data set. Here, the 
rule R2 has 4 false positives and 2 false negatives. In 
another run with the same training set (IRIS), a different 
rule was evolved for the class 2: 

 

R2′:IF (X2 ∈ M  OR X1 ∉  S) AND X3 ∈ M    

THEN  Class 2 

 

Table 4: Fitness of evolved rules for the IRIS data set. 
Here Sens, Spec and Fitn represent sensitivity, 

specificity and fitness, respectively. 

Rule TP TN FP FN Sens Spec Fitn 

R1 42 93 0 0 100% 100% 0.996 

R2 44 85 4 2 96% 96% 0.958 

R3 47 80 8 0 100% 91% 0.951 

 

This rule (R2′) has a more restrictive condition than 
previous R2. In effect, the number of false positives is 
reduced to 3, but the fitness remains similar (0.959) 
because of the increase of the condition length 
(chromosome). 

The simplicity of the rules depends on the data set 
characteristics. For instance, the rules evolved for the 
WINE data set are more complex. The following is a 
typical rule evolved for this data set: 

IF  

(X3 ∈ MS OR X10 ∈ M) AND (X0 ∉  MS  OR X10 ∈ S) 
AND X5 ∉  MS AND X9 ∉  S AND X6 ∉  MS AND X4 ∉  S  

THEN Class 1 

In the case of the VOTE data set, there are only two 
classes. The complexity of these two rules is expected to 
be the same, and the experiments confirmed that as is 
shown in figure 9. 

 

 

Figure 9: Average rule size for the VOTE data set. 

5 CONCLUSIONS  
Our experiments showed that the proposed representation 
works well in a wide variety of classification problems. 
Despite the fact that only five values for the linguistic 
variables were used, the accuracy of the evolved classifier 
rules was very good and comparable to those reported in 
the literature. The accuracy can be further improved by 
increasing the number of linguistic values and applying 
genetic tuning methods to the membership functions 
(Herrera, 98). 
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The main goal of this work was to evolve comprehensible 
rules, which could be accomplished by producing shorter 
rules, and performing automatic feature selection 
according to the complexity of data.  

The main contribution of the present work is the design of 
a representation scheme. It allows an efficient and 
compact representation of complex conditions, using a 
linear chromosome.  

However, more experiments need to be performed with 
bigger data sets and using other genetic operators. It is 
also important to perform quantitative comparison against 
other rule evolution methods, which is a part of our future 
work.  
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