
Evolving Complex Fuzzy Classifier Rules Using a Linear Tree Genetic
Representation

Dipankar Dasgupta

Division of Computer Science
Mathematical Sciences Department

The University of Memphis
Memphis, TN 38152.

ddasgupt@memphis.edu

Fabio A. González

Division of Computer Science
Mathematical Sciences Department

The University of Memphis
and Universidad Nacional de Colombia
fgonzalz@memphis.edu

Abstract

The paper proposes a linear representation of tree
structures in order to evolve complex fuzzy rule
sets for solving classification problems. In
particular, linguistic rules are evolved, where the
condition part of a rule can have an arbitrary
structure of conjunctions and disjunctions. We
describe an efficient rule representation scheme,
which uses a genetic algorithm. The method is
tested with a number of benchmark data sets and
some results are reported.

1 INTRODUCTION
The problem of classification has been studied
extensively in machine learning (Holte,93; Michalski,98;
Weiss,91), and has recently received a lot of attention in
the emerging area of Data Mining (or Knowledge
Discovering) (Han,00; Michalski,98). The problem of
classification can be stated as follows: Given a set of
classified elements (training set), build a system
(classifier) that is capable of categorizing unlabeled
elements (testing set) where the label of an element
represents the class to which it belongs.

There exist many approaches for solving classification
problems (Weiss,91): statistical methods, decision trees,
neural networks, rule-based methods, etc.; and all of them
have some advantages and disadvantages (Curram,94;
Lim,97). The choice of a particular method depends,
however, on factors like the kind of problem to be solved,
the resources available, etc. An important factor in a
good number of problems is the comprehensibility of the
resulting classifier, that is, the possibility of
understanding the resulting model and extracting useful
knowledge to understand the modeled system.
Approaches like neural networks and many of the
statistical methods have very little comprehensibility
(Weiss,91).

Another method, Fuzzy logic has been applied
successfully (Fidelis,00; Gonzalez,98; Ishibuchi,00, 97
and 95) to extract comprehensible classifier knowledge
from data in the form of linguistic rules (in this context,
the linguistic is synonym of fuzzy). The fuzzy method
has the ability to represent imprecise knowledge and the
capability of dealing with noisy data.

Moreover, there have been several works that have
attempted to produce classifier rules (fuzzy and non-
fuzzy) using evolutionary techniques (Bojarczuk,99;
Ishibuchi,95; Liu,00). One of the main problems
encountered in this approach, is the representation of the
condition part of a rule in the chromosome. Since the
condition part can be a very complex logical expression,
there is not a natural way to represent it as linear string.
However, there are two main approaches that have been
studied (De Jong,91):

• Linear representation of the condition part

In some approaches (De Jong,91; Fidelis,00;
Gonzalez,1998; Ishibuchi 00 and 95; Liu,00), the
condition part was restricted to be a conjunction
of one or more logical terms (tests). This makes
the representation of the condition as a linear
string. But, in general, a single rule is not
sufficient enough to characterize a class; rather a
set of rules is necessary. In other approaches
(Giordana, 93), condition structures were
predefined and only some parameters of rules
were evolved. Figure 1(a) shows an example of
such cases.

• Tree representation of the condition part

In this approach, it was possible to represent
arbitrarily complex conditions using Genetic
Programming, with a substantial increase in the
implementation complexity (Bojarczuk,99;
Folino,99; Freitas,97; Tunstel,96). Figure 1(b)
gives an example of tree representation.

Figure 1: Conventional approaches to represent condition
part of a rule. (a) a linear representation (b) a tree
representation.

The purpose of the work presented in this paper, is to
explore a new representation for linguistic classifier rules,
which tries to combine the linear and tree methods,
exploiting the advantages of both. In this approach, we
evolve arbitrarily complex rules using a novel
representation of tree structures in order to apply a genetic
search.

The subsequent sections are organized as follows. Section
2 briefly describes the approach to perform classification
tasks using fuzzy IF-THEN rules. Section 3 presents the
proposed fuzzy rule representation scheme, Section 4
describes experiments and the analysis of results, and
Section 5 draws some conclusions.

2 CLASSIFICATION USING
LINGUISTIC RULES

In general, a linguistic classifier rule has the following
form:

IF x1∈S1 op1 x2∈S2 ... opn-1 xn∈Sn THEN Class m

where,

x i ∈[0.0,1.0], is an attribute or linguistic variable

Si ∈{S,MS,M,ML,L}, is a fuzzy set

opi ∈{AND, OR}, is a Fuzzy-Boolean operator

In this work, the attribute values are normalized in the
interval [0.0,1.0] and fuzzy sets are defined by the
membership functions shown in the Figure 2.

Figure 2: Fuzzy sets and membership functions

In our current experiments, we used 5 linguistic values,
such as S (small), MS (medium small), M (medium), ML
(medium large) and L (large). However, the method can
be easily extended to any number of fuzzy values.

A classifier model can be represented by a set of m rules,
where m is the number of different classes, that is, each
class is represented by one, and only one, rule. For
example,

R1: IF Condition1 THEN Class C1

: : : :

Rm: IF Conditionm THEN Class Cm

In order to classify an unclassified element (x1, ... , xn),
which is represented by a vector of attributes, the
condition part of each rule is evaluated using the
membership functions and the fuzzy-set operators1. Then,
the rule with the highest value in the condition is selected,
and the element is classified according to the consequent
part of that rule:

)},...,({max),...,(1},..,1{1 ncmcn xxConditionxxClass
∈

=

where, Conditionm(x1, ... , xn) represents the value of the
ConditionC evaluated for the element (x1, ... , xn), which is
a real value between 0.0 and 1.0.

3 PROPOSED APPROACH
In general, the condition part of a rule corresponds to a
logic expression, which can be represented by an
expression tree; a linear chromosome with variable length
represents this expression tree.

A standard genetic algorithm with special operators is
applied to evolve the rules. A GA run evolves a rule, so
multiple runs are needed to cover all classes in the
training set. The elements in the training set that belong to

1 The union (OR) operator is calculated by the function max(,) and the
intersection (AND) by the function min(,)

 S MS M ML L

0.0 1.0

(a)
IF t e s t1 a n d t e s t 2 … a n d t e s tn
T H E N C l a s s m

(b)
IF t e s t1 a n d ((… a n d t e s t 2) o r …)
T H E N C l a s s m

t e s t1 t es t 2 … . . t e s t n

 and

 o r

 and

tes t 1

t e s t2

the class of the respective run are considered positive
examples and the elements that belong to other classes are
considered negative examples.

3.1 LINEAR REPRESENTATION OF
LINGUISTIC RULES

Since there are different GA runs for each class, we do
not have to represent the action part of the rule in the
chromosome; it only represents the condition part.

Formally, a condition is generated by the following
grammar:

(1) <condition> ::= <condition> <operator>
<condition>

 | <atomic_condition>

(2) <atomic_cond> ::= <variable> <rel op>
<set>

(3) <operator> ::= AND <prec> | OR <prec>

(4) <variable> ::= X1|...| xn

(5) <rel op> ::= ∈ | ∉

(6) <set> ::= S | MS | M | ML | L

(6) <prec> ::= 1 | 2 |...| 8

The tree structure of an expression is generally expressed
using braces that indicate the order of evaluation of the
operators. When braces are not used, the default
precedence of the operators determines the order of
evaluation.

In our approach, we introduced precedence values for
each operator in the representation itself (represented by
<prec> in the grammar). This precedence value
indicates the order of evaluation; an operator with a
higher precedence value is evaluated first. Therefore, it is
not necessary to have braces or a tree representation to
express the evaluation order, so the expression can be
represented by a linear string.

For example, the condition

X2 ∈ MS AND2 X1 ∉ S OR1 X3 ∈ ML AND3 X2 ∈ L

represents the condition expression, as shown in Figure 3:

(X2 ∈ MS AND X1 ∉ S) OR (X3 ∈ ML AND X2 ∈ L)

Figure 3: Tree representation of a condition expression

The precedence value of the operator AND2 indicates that
this operation has to be performed before the operation
OR1. When two consecutive operators have the same
precedence value, the left one is evaluated first.

This scheme allows the representation of arbitrary
complex conditions; the number of different precedence
values determines the maximum depth of an expression
tree.

Applying the grammar rule (1) multiple times, we get a
condition with the following structure:

<ac1> <op1> ... <acn> <opn> <acn+1>
where

<aci>: Atomic Condition

<opi>: Fuzzy Operator

This condition expression is represented by a
chromosome with the structure shown in the Figure 4.

Gene1 ... Genen Genen+1

ac1 op1 ... acn opn acn+1 **

var1 ro1 s1 o1 prec1 ... varn ron sn on precn varn+1 ron+1 sn+1 **

Figure 4: Chromosome representation of the condition.

An Atomic Condition and a Fuzzy Operator compose a
gene. However, there is an exception in the last gene,
which is composed of an Atomic Condition, and the last
part (Fuzzy Operator) is ignored.

In our implementation, each gene is represented using 16
bits in the following way:

• Atomic Condition part:

o 8 bits to represent the variable (vari)

o 1 bit to represent the relational operator (ro i)

o 3 bits to represent the set (s i)

• Operator part:

o 1 bit to distinguish between AND and OR (o i)

o 3 bits to represent the precedence (preci)

An important characteristic of this representation is that,
in order to express the genotype, it is not necessary to
build the expression tree. Instead, the classical parsing
algorithm, operator precedence parser (Aho,86), can be
used. This technique allows the evaluation of an
expression in a very efficient way. The chromosome only
has to be traversed once, that is, the time complexity of
the evaluation is O(n), where n is the condition expression
length.

The evaluation algorithm based on the operator
precedence parser can efficiently be implemented (using
array and stack operations instead of pointer operations).

 OR

 AND AND

X2 ∈ MS X1 ∉ S X3 ∈ ML X2 ∈ L

This fact along with the compact chromosomal
representation makes this approach computationally
inexpensive.

3.2 FITNESS EVALUATION

The fitness of each chromosome (rule) is evaluated with
respect to a set of attribute vectors (training set) to which
a class has been previously assigned. In each run of the
genetic algorithm, a rule with different class Ci is evolved.
Accordingly, vectors in the training set with class part
equal to Ci are considered positive examples, and the
elements with class part different from Ci are considered
negative examples.

In our approach, the first step is to evaluate the condition
part of the rule for a given vector. If the result is greater
than or equal to 0.5, then the condition is true, otherwise it
is false. Next, the class of the vector is compared to the
class Ci of the actual run, and four different outcomes are
possible, shown in Table 1.

Table 1: Types of the classifications results

Condition Class Type

TRUE Equal True Positive (TP)

TRUE Different False Positive (FP)

FALSE Equal False Negative (FN)

FALSE Different True Negative (TN)

The fitness of the condition is evaluated taking into
account three objectives: maximize the sensitivity,
maximize the specificity, and minimize the length of the
chromosome. The length of the chromosome is penalized,
because we want to evolve simple rules. This is an
important factor that contributes to the comprehensibility.
The formulas used are as follow:

where MaxLength is the maximum allowable genes in a
chromosome, and length is the actual number of genes in
the chromosome.

This is a multi-objective problem, and there are different
ways to deal with this kind of problem (Fonseca, 97). We
chose to use a weighted sum approach, however, further
experimentation with other multi-objective optimization
approaches will be necessary. The wi terms in the fitness
definition represent the weight values.

3.3 GENETIC OPERATORS

The following genetic operators are used:

• Restricted Crossover: A crossover point is chosen
between 1 and the minimum of the lengths of the
two selected chromosomes. The child with minimal
length is chosen (Figure 5.a).

• Mutation: A randomly chosen bit is changed as
used in simple GA’s.

• Gene Elimination: A gene is chosen randomly and
eliminated. The length of the new chromosome is 16
bits shorter than the parent chromosome (Figure
5.b).

• Gene Addition: A random gene is generated and
added at the end of the chromosome. The length of
the new chromosome is 16 bits longer than the
parent chromosome (Figure 5.c).

Figure 5: Genetic operators. (a) restricted crossover (b)
gene addition (c) gene elimination.

However, only one operator is applied each time. The
operator to be applied is chosen using a uniformly
generated random number and the probability assigned to
each operator.

4 EXPERIMENTATION
In order to evaluate the performance of the proposed
approach to extract comprehensible linguistic rules from
the training data, tests were conducted using publicly
available data sets (University of California, Irvine,
Repository of Machine Learning Databases (Blake,98)).
These data sets are referenced frequently in the
classification and machine learning literature, and it is a
well-known standard for testing.

The data sets used are described in Table 2. The sample
size s, the number of classes, and the type of attributes are
shown in Table 2.

)1(s

and ,

 s

321 MaxLength
lengthwspecifcitywensitivitywfitness

FPTN
TNspecifcity

FNTP
TP

ensitivity

−+⋅+⋅=

+
=

+
=

g 1 g n

. . g i -1 g i + 1 . . .

(a)

(b)

g 1 g n g n + 1

(c)

 . . g i -1 g i g i + 1 . . .

Table 2: Test Data sets used for experiments

Attributes Data

Set

Sample
size

No. of
classes Numerical Categorical

IRIS 150 3 4 0

VOTE 435 2 0 16

WINE 178 3 13 0

4.1 EXPERIMENTAL SETTING

The data sets with numerical attributes were normalized
to have all values in a fixed range [0.0,1.0]. The attributes
of the VOTE data set have 3 possible values ‘YES’, ‘NO’
and ‘?’2; these values were codified as 1.0, 0.0 and 0.5,
respectively, to deal with categorical data.

A ten-fold testing strategy was employed (Lim, 97), that
is, the data set was partitioned into ten randomly chosen
subsets, and each subset was used as a testing set for the
classifier trained with the remaining subsets. The score of
the classifier (correctly classified samples / sample size)
was calculated as the average score of 10 tests. This
process was repeated 5 times for each data set and the
average score was taken.

A number of GA parameters were tested, and the reported
results used tournament selection, with a tournament size
of 4, along with elitism -- the best individual of each
generation is copied to the next generation.

GA parameter values:

Population: 200

Generations: 200

Mutation Rate: 0.05

Crossover Rate: 0.35

Gene Addition Rate: 0.35

Gene Elimination Rate: 0.25

Maximum Length: 50 genes

Each GA run was initialized with a random population of
rules with five genes. The weights used in the fitness
function were w1=0.45, w2=0.45 and w3=0.1, to give more
importance to sensitivity and specificity terms. In our
empirical study, these values produced good results in
different experiments; however, more experimentation
will be necessary to define criteria for tuning parameter
values.

4.2 RESULTS AND ANALYSIS

The average score and the variance in data sets are
reported in Table 3. In particular, the value 94%+/-0.3 in
the first row illustrates that the experimentations of the
IRIS data set produce an average score of 94.5% with a
variance of 0.3%. Although quantitative comparisons with
other methods are useful, and desirable, our results

2 The character ‘?’ means a neutral vote, neither YES or NO.

compare well to those reported in the literature (IRIS
(Folino,99; Gonzalez,1998; Ishibuchi,95; Liu,00), VOTE
(Folino,99; Lim,97), WINE (Ishibuchi,00)).

Table 3: Results of average prediction accuracy

Data Set Score

IRIS 94.5% +/- 0.3

VOTE 94.7% +/- 0.1

WINE 93.9% +/- 0.7

The most important objective of our fuzzy rule
classification was to obtain comprehensible rules. The
proposed approach was able to evolve simple rules, and
the following set of rules were evolved for IRIS data set
in a typical run:

R1: if X3 ∈ S OR6 X2 ∈ S THEN Class 1

R2: if X3 ∈ M THEN Class 2

R3: if X3 ∈ ML OR (X2 ∈ ML AND X0 ∈ M) OR X3 ∈ L
THEN Class 3

There are two key points to be noted in this set of rules:

- The simplicity of the rules: The system was able to
evolve short rules.

- The feature selection: The system was able to
select attributes that contribute to distinguishing a
class, discarding other attributes.

These improved results were accomplished due to the
evolutionary pressure towards shorter rules. Figure 6
shows the evolution of the fitness and the average rule
size of the population in a particular run of the GA using
the IRIS data set. It shows how the size of the rule
converges to an optimal value, while the average fitness
of the population increases.

Figure 6: Fitness and size of the rule 2 evolution for the
IRIS data set (the fitness is multiplied by 5)

0
1
2
3
4
5
6
7
8

1 5 9 13 17 21 25 29 33 37 41 45 49

Generations

F
it

n
es

s*
5

 /
A

vg
. S

iz
e

Fitness*5

R2

The optimal size of a rule depends on the complexity of
the class that it intends to model. Figure 7 shows the
change in the average size of three rules for the IRIS data
set. The convergence value of each rule is different and it
can be interpreted as a measure of complexity of the class
that it represents.

Figure 7:Evolution of the rule size for the IRIS data set.

Figure 8 presents the rule size behavior for the WINE data
set. The convergence values are greater than those of the
IRIS data set. This indicates that the WINE data set is
more complex than the IRIS data set from the
classification point of view.

Figure 8: Evolution of the rule size for the WINE data set.

In some cases, there is a tradeoff between simplicity and
accuracy. Table 4 shows the scores for the previously
shown set of evolved rules for the IRIS data set. Here, the
rule R2 has 4 false positives and 2 false negatives. In
another run with the same training set (IRIS), a different
rule was evolved for the class 2:

R2′:IF (X2 ∈ M OR X1 ∉ S) AND X3 ∈ M

THEN Class 2

Table 4: Fitness of evolved rules for the IRIS data set.
Here Sens, Spec and Fitn represent sensitivity,

specificity and fitness, respectively.

Rule TP TN FP FN Sens Spec Fitn

R1 42 93 0 0 100% 100% 0.996

R2 44 85 4 2 96% 96% 0.958

R3 47 80 8 0 100% 91% 0.951

This rule (R2′) has a more restrictive condition than
previous R2. In effect, the number of false positives is
reduced to 3, but the fitness remains similar (0.959)
because of the increase of the condition length
(chromosome).

The simplicity of the rules depends on the data set
characteristics. For instance, the rules evolved for the
WINE data set are more complex. The following is a
typical rule evolved for this data set:

IF

(X3 ∈ MS OR X10 ∈ M) AND (X0 ∉ MS OR X10 ∈ S)
AND X5 ∉ MS AND X9 ∉ S AND X6 ∉ MS AND X4 ∉ S

THEN Class 1

In the case of the VOTE data set, there are only two
classes. The complexity of these two rules is expected to
be the same, and the experiments confirmed that as is
shown in figure 9.

Figure 9: Average rule size for the VOTE data set.

5 CONCLUSIONS
Our experiments showed that the proposed representation
works well in a wide variety of classification problems.
Despite the fact that only five values for the linguistic
variables were used, the accuracy of the evolved classifier
rules was very good and comparable to those reported in
the literature. The accuracy can be further improved by
increasing the number of linguistic values and applying
genetic tuning methods to the membership functions
(Herrera, 98).

0

2

4

6

8

10

12

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

Generation

A
vg

. r
u

le
 s

iz
e

R1
R2
R3

0
1
2
3
4
5
6

1 9 17 25 33 41 49 57 65 73 81 89 97
Generations

A
vg

. r
u

le
 s

iz
e R2

R1

0
1
2
3
4
5
6
7

1 6 11 16 21 26 31 36 41 46
Generations

A
vg

. R
u

le
 S

iz
e R1

R2
R3

The main goal of this work was to evolve comprehensible
rules, which could be accomplished by producing shorter
rules, and performing automatic feature selection
according to the complexity of data.

The main contribution of the present work is the design of
a representation scheme. It allows an efficient and
compact representation of complex conditions, using a
linear chromosome.

However, more experiments need to be performed with
bigger data sets and using other genetic operators. It is
also important to perform quantitative comparison against
other rule evolution methods, which is a part of our future
work.

Acknowledgements

This work was funded by the Defense Advanced Research
Projects Agency (no. F30602-00-2-0514) and Office of
Navel Research (no. N000149910721).

References

A.V. Aho, R. Sethi, and J.D. Ullman (1986). Compilers:
Principles, Techniques, and Tools. Addison-Wesley.

C.L. Blake, and Merz, C.J. (1998). UCI Repository of
machine learning databases Irvine, CA: University of
California, Department of Information and Computer
Science.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

C.E. Bojarczuk, H.S. Lopes and A.A. Freitas (1999).
Discovering comprehensible classification rules using
genetic programming: a case study in a medical domain.
Proc. Genetic and Evolutionary Computation Conference
GECCO99, Morgan Kaufmann, 1999, pp. 953-958.

S. Curram and J. Mingers (1994). Neural Networks,
Decision Tree Induction and Discriminant Analysis: An
empirical comparison. J. of the Operational Research
Society, 45(4):440-450.

K. De Jong and W. Spears (1991). Learning Concept
Classification Rules Using Genetic Algorithms.
Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, pp. 651-656.

M.V. Fidelis, H.S. Lopes and A.A. Freitas (2000).
Discovering comprehensible classification rules with a
genetic algorithm. Proc. Congress on Evolutionary
Computation (CEC), pp. 805-810.

G. Folino, C. Pizzuti and G. Spezzano (1999). A Cellular
Genetic Programming Approach to Classication. Proc. Of
the Genetic and Evolutionary Computation Conference
GECCO99, Morgan Kaufmann, pp. 1015-1020.

C.M. Fonseca and P.J. Fleming (1997). Multiobjective
Optimization. In Handbook of Evolutionary Computation,
release 97/1, IOP Publishing Ltd. and Oxford University
Press.

A.A. Freitas (1997). A Genetic Programming Framework
for two Data Mining Tasks: Classification and

Generalised Rule Induction. Proc. of 2nd Annual Genetic
Programming Conference GP'97, pp 96-101.

A. Giordana and L. Saitta (1993). Regal: an integrated
system for learning relations using genetic algorithms.
Proceedings of the Second International Workshop on
Multistrategy Learning. R.S. Michalski et G. Tecuci
(eds), pp. 234-249.

A. Gonzalez and R. Prez (1998). Completeness and
consistency conditions for learning fuzzy rules. Fuzzy Sets
and Systems, 96: 37-51.

J. Han and M. Kamber (2000). Data Mining: Concepts
and Techniques. Morgan Kaufmann.

F. Herrera, M. Lozano and J.L. Verdegay (1998). A
learning process for fuzzy control rules using genetic
algorithms. Fuzzy Sets and Systems, 100:143-158.

R. Holte (1993). Very simple classification rules perform
well on most commonly used datasets. Machine Learning,
11:63-91.

H. Ishibuchi and T. Nakashima (2000). Linguistic Rule
Extraction by Genetics-Based Machine Learning.
Proceedings of the Genetic and Evolutionary
Computation Conference GECCO’00, 195-202. Morgan
Kaufmann.

H. Ishibuchi and T. Murata (1997). A genetic-algorithm-
based fuzzy partition method for pattern classification
problems. In F. Herrera and J.L. Verdegay (eds.), Genetic
algorithms and soft computing, Physica-Verlag, pp. 555-
578.

H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka
(1995). Selecting fuzzy if-then rules for classification
problems using genetic algorithms. IEEE Transactions on
Fuzzy Systems, 3(3):260-270.

T. Lim and W. Loh (1997). A Comparison of Prediction
Accuracy, Complexity, and Training Time of Thirty-Three
Old and New Classification Algorithms. Technical
Report, Department of Statistics, University of
Wisconsin-Madison, No. 979.

J. Liu and J. Kwok (2000). An extended genetic rule
induction algorithm. Proceedings of the Congress on
Evolutionary Computation (CEC), pp.458-463.

R.S. Michalski, I. Bratko and M. Kubat (1998). Machine
learning and data mining: methods and applications. J.
Wiley & Sons, U.K.

E. Tunstel and M. Jamshidi (1996). On Genetic
Programming of Fuzzy Rule-Based Systems for
Intelligent Control. Intl. Journal of Intelligent Automation
and Soft Computing, 2(3):271-284.

S. M. Weiss and C. A. Kulikowski (1991). Computer
Systems that Learn. Classification and Prediction
Methods from Statistics, Neural Nets, Machine Learning,
and Expert Systems. Morgan Kaufmann Publishers, Inc.

