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ABSTRACT

Active contour models  – known colloquially as snakes – are energy-minimising curves that

deform to fit image features. Snakes lock on to nearby minima in the potential energy gener-

ated by processing an image. (This energy is minimised by iterative gradient descent accord-

ing to forces derived using variational calculus and Euler-Lagrange Theory.) In addition,

internal (smoothing) forces produce tension and stiffness that constrain the behaviour of the

models; external forces may be specified by a supervising process or a human user. As is

characteristic of gradient descent, the energy minimisation process is unfortunately prone to

oscillation unless precautions – typically the use of small time steps – are taken.

Active contour models provide a unified solution to several image processing

problems such as the detection of light and dark lines, edges, and terminations; they can also

be used in stereo matching, and for segmenting spatial and temporal image sequences. Snakes

have often been used in medical research applications; for example, in reconstructing three-

dimensional features from planar slices of volume data such as NMR or CT images. In

addition, many motion tracking systems use snakes to model moving objects. The main

limitations of the models are (i) that they usually only incorporate edge information (ignoring

other image characteristics) possibly combined with some prior expectation of shape; and

(ii) that they must be initialised close to the feature of interest if they are to avoid being

trapped by other local minima.
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1 INTRODUCTION

Low-level visual tasks such as edge detection and stereo matching are often treated as autono-

mous bottom-up processes. However, this sequential approach propagates mistakes to higher

processes without providing opportunities for correction. A more attainable goal for low-level

processing is to provide several interpretations of the image data, from which higher

processes† or a human user may choose. Active contour models – first described by Kass et

al (1987; 1988) – provide one possible method for generating these alternative interpretations.

Active contour models are often called snakes because they appear to slither across

images (a phenomenon known as hysteresis); they are one example of the general technique of

matching a deformable model to an image using energy minimisation. From any starting point,

subject to certain constraints, a snake will deform into alignment with the nearest salient

feature in a suitably processed image; such features correspond to local minima in the energy

generated by processing the image. Snakes thus provide a low-level mechanism that seeks

appropriate local minima rather than searching for a global solution. In addition, high-level

mechanisms can interact with snakes – for example, to guide them towards features of

interest. Unlike most other techniques for finding image features, snakes are always minimis-

ing their energy. Changes in high-level interpretation can therefore affect a snake during the

minimisation process, and even in the absence of such changes the model will still exhibit

hysteresis in response to a moving stimulus.

Snakes do not try to solve the entire problem of finding salient image features; they

rely on other mechanisms to place them somewhere near a desired solution. For example,

automatic initialisation procedures can use standard image processing techniques to locate

features of interest that are then refined using snakes. Even in cases where automatic initiali-

sation is not possible, however, active contour models can still be used for image interpreta-

tion. An expert user need only push a snake towards an image feature, and the energy minimi-

sation process will fit the model to the data. This behaviour has been exploited in numerous

interactive image processing systems – for example, see Kass et al (1987; 1988); Hill et

al (1992); Porrill and Ivins (1994).

A snake is typically driven by a potential energy generated by processing the underly-

ing image data. For example, Gaussian smoothing followed by convolution with a
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gradient-squared operator generates a potential in which extrema correspond to edges in the

original image. Over a series of iterations the force generated by this energy drives the snake

into alignment with the nearest salient edge. However, the snake must also satisfy some inter-

nal constraints – for example, it must be smooth and continuous in outline. Sometimes the

user imposes additional external constraints such as attraction or repulsion.

Edge:

New Snake
(Time t+1):

Current Snake
(Time t):

Movement:

Figure 1: A Closed Active Contour Model. This diagram shows a snake with its ends joined
so that it forms a closed loop. Over a series of time steps the snake moves into alignment with
the nearest salient feature (in this case an edge).

Both internal and external energy constraints are discussed in Section 2; potential energy is

discussed in Section 3. Section 4 uses these energy terms to derive explicit forces that can be

used to drive active contour models to minimise their energy by iterative gradient descent.

The original (semi-implicit) method proposed by Kass et al (1987), which is related to the

explicit use of forces, is then described in the next two sections. First, the calculus of varia-

tions is used to derive the Euler-Lagrange equation in Section 5; this equation is then used to

find the minimum energy condition for an active contour model. Section 6 explains how to

solve the minimum energy equation using a semi-implicit relaxation method based on a fast

matrix inversion algorithm. (Both the explicit and semi-implicit methods use finite differences

to compute derivatives as described in Appendix A; Appendix B contains six mathematical

notes that provide simple background information.) Oscillation, the main drawback of relaxa-

tion methods, is discussed in Section 7. Finally, Section 8 considers the use of inter-snake

energy terms in three of the most common applications – stereo matching, and segmentation

of spatial and temporal image sequences.
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2 SNAKE ENERGY FUNCTIONALS

A snake is a parametric contour that deforms over a series of iterations (time steps). Each

element x along the contour therefore depends on two parameters:

x(s, t)
 

 
 

s = space (curve) parameter
t = time (iteration) parameter

The contour is influenced by internal and external constraints, and by image forces, as

outlined below.

� Internal forces. Internal constraints give the model tension and stiffness.

� External forces. External constraints come from high-level sources such as human

operators or automatic initialisation procedures.

� Image forces. Image energy is used to drive the model towards salient features such as

light and dark regions, edges, and terminations.

Representing a snake parametrically as explained in Mathematical Note 1, x(s) = ( x(s), y(s) )

where s is usually taken to vary between 0 and 1. The total energy of the model Esnake is given

by the sum of the energy for the individual snake elements:†

(2.1)Esnake = �
0

1
Eelement( x(s) ) ds

The integral notation used in this section implies an open-ended snake; however, joining the

first and last elements makes the snake into a closed loop as shown in Figure 1.

Equation 2.1 can be rewritten in terms of three basic energy functionals:††

(2.2)Esnake = �
0

1
Eintern(x) ds + �

0

1
Eextern(x) ds + �

0

1
Eimage(x) ds

The curve parameter s is omitted where no ambiguity arises. The gradients of the three energy

functionals in Equation 2.2 correspond to the three forces listed above. The internal and exter-

nal energy functionals are considered in more detail below; image (potential) energy is dealt

with in the next section.
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2.1 INTERNAL (INTRA-SNAKE) ENERGY

Using subscripts to indicate derivatives, the internal energy of a snake element is defined as:

(2.3)Eintern(x) =
Tension

�(s) xs(s) 2 +
Stiffness

�(s) xss(s) 2

This energy contains a first-order term controlled by α(s), and a second-order term controlled

by β(s). The first-order term makes the snake contract like an elastic band by introducing

tension; the second-order term makes it resist bending by producing stiffness. In other words,

the parametric curve is predisposed to have constant (preferably zero) ‘velocity’ and ‘accelera-

tion’ with respect to its parameter.

In the absence of other constraints, an active contour model simply collapses to a point

like a strip of infinitely-elastic material; however, if the ends of the model are anchored then it

forms a straight line along which the elements are evenly spaced. Adjusting the weights α(s)

and β(s) controls the relative importance of the tension and stiffness terms. For example,

setting β(s) = 0 in one part of the model allows it to become second-order discontinuous and

develop a corner. For simplicity, the tension and stiffness weightings are assumed to be

uniform throughout the remainder of this document, so that α(s) = α and β(s) = β.

2.2 EXTERNAL (EXTRA-SNAKE) ENERGY

Both automatic and manual supervision can be used to control attraction and repulsion forces

that drive active contour models to or from specified features. For example, a spring-like

attractive force can be generated between a snake element and a point i in an image using the

following external energy term:

(2.4)Eextern(x) = k i − x 2

This energy is minimal (zero) when x = i, and it takes the value of k when i – x = ±1 as shown

in Figure 2. Mathematical Note 2 reviews the properties of extrema in functions.

An external energy term Eextern can also be used to make part of an image repel an

active contour model:

(2.5)Eextern(x) = k
i − x 2

This energy is maximal (infinite) when x = i; it is unity when i – x = ± k. Because of the

singularity, the repulsion term must be clipped as the denominator approaches zero.
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Negating the (positive) constant k in these equations converts attraction to pseudo-

repulsion, and repulsion to pseudo-attraction; however, these pseudo energy terms are

unusable because their minima are infinite. (During energy minimisation, the singularities

completely dominate the behaviour of an active contour model, at the expense of all other

energy terms.) The forces produced by these energy terms are easily found by differentiation.

 ∞  ∞  ∞ 

(a) Attractive Energy (b) Repulsive Energy

 E  E 

 k 

+k– k

 1 

+1–1 i–xi–x 0  0 

Figure 2: Attraction And Repulsion Energy. These graphs show the attractive and repulsive
energy terms. Both functionals have maximal values that are infinite; the minima are zero.
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3 IMAGE (POTENTIAL) ENERGY FUNCTIONALS

The potential energy P generated by processing an image I(x, y) produces a force that can be

used to drive snakes towards features of interest. Three different potential (image) energy

functionals are described below; these attract snakes to lines, edges, and terminations. The

total potential energy can be expressed as a weighted combination of these functionals:

(3.1)P = Eimage = wlineEline + wedgeEedge + wtermEterm

The nearest local minimum the potential energy can be found using gradient descent as

described in Section 4:

(3.2)x � x + �x

The image forces δx produced by each of the terms in Equation 3.1 are derived below, in

advance of the main discussion of energy minimisation and forces in Sections 4–6.

If just a small portion of an active contour model finds a low-energy image feature

then the internal constraints will pull neighbouring elements towards that feature. This effect

can be enhanced by spatially smoothing the potential energy field. Typically, a snake is first

allowed to reach equilibrium on a very smooth potential; the blurring is then gradually

reduced – see Witkin et al (1986). At very coarse scales the snake does a poor job of localis-

ing features, and fine detail is lost; however, it is attracted to local minima from far away.

Reducing the amount of blurring allows the snake to form a more accurate model of the

underlying image.

3.1 REGION FUNCTIONAL

The simplest potential energy is the unprocessed image intensity so that P(x) = I(x):

(3.3)Eline = �
0

1
I( x(s) ) ds

According to the sign of wline in Equation 3.1, the snake will be attracted either to light or dark

regions of the image.

Using ∇  to indicate image gradient, the corresponding image force δx is given by:

�x � − �P
�x = − �I

�x = −�I(x)

Local minima in the image intensity can therefore be found by taking small steps in x:

(3.4)x � x − � �I(x)

The positive time step τ is chosen to suit the problem domain; however, it is almost invariably

one or two orders of magnitude less than unity to prevent oscillation (see Section 7). For an
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extension of this idea for segmenting textures and colours see the work on active region

models by Ivins and Porrill (1995).

3.2 EDGE FUNCTIONAL

By far the most common use for active contour models is as semi-global edge-detectors that

minimise a potential energy in which minima correspond to strong edges – see Figure 3.

(a) Unprocessed Image (b) Potential (Edge) Energy

    

Figure 3: Potential (Edge) Energy. (a) An unprocessed 256-by-256 pixel NMR image.
(b) The potential energy generated by smoothing the image, convolving it with a simple gradi-
ent operator, and negating the result (the image has been re-scaled for display). Strong edges
produce correspondingly low (dark) local minima; however, fine detail is lost during the
smoothing process, which is necessary to eliminate noise and spread out legitimate edges.

Edges can be found with a gradient-based potential energy functional such as:

(3.5)Eedge = −�
0

1 �I
�x

2

ds

For example, consider a snake element x = (x, y) with potential energy P(x) = –| ∇ I(x) |2; the

image force acting on this element is given by:

�x � − �P
�x = �

�x
( �I 2 ) = 2 ��I(x) �I(x)

The term ∇∇ I(x) is the Hessian matrix of second-order image derivatives. Strong edges can

therefore be found using:

(3.6)x � x + � ��I(x) �I(x)
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3.3 TERMINATION FUNCTIONAL

The ends of line segments, and therefore corners, can be found using an energy term based on

the curvature of lines in a slightly smoothed image C(x, y) = Gσ(x, y) * I(x, y). If the gradient

direction is given by θ = tan−1(Cy / Cx) then the unit vectors along, and perpendicular to, the

image gradient are given by:

Tangent: n =
cos �
sin�

Normal: n� =
−sin�
cos �

The curvature of a contour in C(x, y) can be written:

(3.7)Eterm = �
0

1 ��
�n�

ds = �
0

1 �2C/�n
�

2

�C/�n ds

Expanding the derivatives:

(3.8)Eterm = �
0

1 CyyCx
2 + CxxCy

2 − 2CxyCxCy

Cx
2 + Cy

2
3/2 ds

This energy formula provides a simple means for attracting snakes towards corners and

terminations.
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4 GRADIENT DESCENT USING FORCES

The previous two sections can be summarised by stating that, at its simplest, the energy E of

an active contour model x(s) is defined as:†

(4.1)E( x(s) ) =

Potential

�
0

1

P(x(s)) ds +

Tension

�
2 �0

1 �x(s)
�s

2

ds +

Stiffness

�
2 �0

1 �2x(s)
�s2

2

ds

This section considers the task of minimising these energy functionals. First, the general

technique of minimisation by iterative gradient descent is introduced; an equation is then

derived to describe the energy changes that occur when an active contour model is moved, and

this equation is used to calculate forces for energy minimisation by gradient descent.

4.1 CONJUGATE GRADIENT DESCENT

In general, an energy function E(x) can be minimised by altering each variable according

some small quantity δx that is guaranteed to reduce the value of the function:

(4.2)x � x + �x

Local linear approximation gives an expression for the new energy:

(4.3)E(x + �x) � E(x) + �E
�x � �x

Clearly, δx must be chosen so that the energy decreases at each iteration. The gradient descent

rule is based on the fact that steps down an energy hypersurface (see Figure 4) can be guaran-

teed by making small changes in the direction of the negated gradient:

(4.4)�x � − �E
�x

The new value of the energy function is given by:

(4.5)E(x + �x) � E(x) − � �E
�x

2

The negative sign and square power (dot product) in this equation guarantee that E will

decrease at each iteration until the minimum is reached; however, the (small) time step τ must

be chosen carefully to avoid oscillation (see Section 7) and is almost invariable less than

unity.

Conjugate gradient descent, as illustrated in Figure 4, finds the nearest local minimum

in an energy hypersuface, with no consideration of global properties. Unfortunately, this
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simplicity can lead to problems when there are several minima close together because a snake

can be attracted to a feature (energy minimum) other than that intended by the user.

High

Energy

Low

Energy

(b) Energy Contours

 x2

 x1

(a) Energy Hypersurface

x 2

 x1

 E 

Figure 4: Conjugate Gradient Descent. This figure shows four alternative paths down a
three-dimensional energy surface. At each iteration the gradient descent algorithm moves the
energy value towards the nearest local minimum by making a small change in the direction
given by the negated energy gradient (orthogonal to the local energy contours). The process is
repeated until this gradient (force) is zero, at which point none of the variables can be altered
without increasing the energy.

4.2 ENERGY GRADIENT FOR AN ACTIVE CONTOUR MODEL

Before gradient descent can be used to minimise the energy of an active contour model it is

necessary to obtain an expression for the corresponding energy gradient which determines the

changes that are made to the model (forces) at each iteration.

From Equation 4.1 the basic energy of a closed active contour model† is given by:

(4.6)E(x) = � P(x) ds + �
2 � x� 2ds +

�
2 � x �� 2ds

 

 
 
 
 

x � x(s)
x

�

� �x/�s
x

��

� �2x/�s2

Note the use of dashes to indicate derivatives. The ends of this model are joined so that it

forms a closed loop; in the discrete approximation to this equation, the first and last of the N

snake elements are consecutive so that x(0) ≡ x(N).
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If the snake changes slightly then the total energy of the new configuration is:

(4.7)E(x + �x) = � P(x + �x) ds + �
2 � x

� + �x
� 2ds +

�
2 � x

�� + �x
�� 2ds

This equation can be simplified using the following approximations:

P(x + �x) = P(x) + �P(x) � P(x) + �P
�x � �x

x + �x 2 = x�x + 2x��x +
Negligible

�x � �x � x2 + 2x��x

Equation 4.7 therefore simplifies to:

E + �E � � P(x) + �P
�x � �x ds

(4.8)

+ �
2 �x

� 2 + 2x
�

� �x
�

ds +
�
2 �x

�� 2 + 2x
��

� �x
��

ds

Subtracting 4.6 from 4.8 gives an approximation for the energy change that arises from a

small adjustment to the configuration of the snake:

(4.9)�E = � �P
�x � �x ds + ��x

�

� �x
�

ds + ��x
��

� �x
��

ds

This approximation is simplified using integration by parts (see Mathematical Note 5) to

eliminate δx’ and δx’’:

(4.10)�E = � �P
�x � �x ds − ��x �� � �x ds + � �x���� � �x ds

Equation 4.10 can be factorised to give a simple expression that includes the energy gradient:

(4.11)�E = � �P
�x − � x �� + � x ���� � �x ds

Negating this expression gives the local direction of steepest descent down the energy hyper-

surface; however, it does not indicate how far to move and must be treated with caution since

it is only a local description of the surface.

4.3 FORCES

Assuming it is not already at a minimum, the energy of a snake will decreases at each iteration

if δx is a negated fraction (the time step δt, which must be positive) of the energy gradient

given by Equation 4.11:

(4.12)�x = −�t �P
�x − � x �� + � x ����
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Substituting this expression back into Equation 4.11 gives:

(4.13)�E = −�t� �P
�x − � x �� + � x ����

2

ds

The iterative rule for conjugate gradient descent is therefore:

(4.14)x � x + �x �x
�t = − �E

�x = � x�� − � x ���� − �P
�x

At the limit of infinitesimal steps:

(4.15)�x
�t =

Tension
Force

� �2x
�s2 −

Stiffness
Force

� �4x
�s4 −

Image
Force

�P
�x

The energy of an active contour model can therefore be minimised by calculating this resultant

force for, and applying it to, each snake element in turn.

Note that in mechanical systems, force is the product of mass and acceleration:

f = m �2x
�t2

However, in Equation 4.15 force and velocity are equivalent:

f = �x
�t

An active contour model driven using this equation therefore behaves as though travelling in a

viscous medium such that inertia is negligible and movement with constant velocity requires a

constant force to be applied.

(a) Initial Snake (b) Final Snake

    

Figure 5: An Active Contour Model. This figure shows two views of an MR image (the
potential energy generated by smoothing the image and convolving it with a simple gradient
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operator is shown in Figure 3). (a) An initial snake configuration marked by the user. (b) The
final snake configuration after energy minimisation by gradient descent; the snake is model-
ling the skin over the skull. (Note that the snake has been re-parameterised during energy
minimisation; this process is not discussed further in this document.)

Gradient descent using explicit forces is not the only way to minimise the energy of an active

contour model. For example, dynamic programming was proposed by Amini et al (1988) as a

method for finding minima that are guaranteed to be global within some predetermined search

range; however, this method suffers from increased computational complexity and will not be

discussed further in this document. The semi-implicit method originally used by Kass et

al (1987) is a faster alternative that relies on an efficient matrix inversion algorithm to solve a

set of simultaneous equations by relaxation; the solutions to these equations describe the

minimum energy state of an active contour model. The semi-implicit method is described in

the next two sections.
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5 CALCULUS OF VARIATIONS

This section uses variational calculus to derive the Euler-Lagrange equation, which describes

extrema in functionals; this equation is then used to obtain an equation that describes the

minimum energy condition of an active contour model.

5.1 THE EULER-LAGRANGE EQUATION

Consider the problem of minimising (or maximising) a functional E such as:

(5.1)E(y) = �
a

b
F( x, y(x), y �(x) ) dx

(The independent variable x can be omitted where there is no ambiguity). Making a small

change δy to the value of the function y generates a corresponding change in E:

(5.2)E(y + �y) = �
a

b
F( x, y + �y, y � + �y � ) dx

Using the Taylor expansion (see Mathematical Notes 3 and 4) and ignoring terms above first

order:

(5.3)E + �E � �
a

b
F + �F

�y �y + �F
�y �

�y � dx

Subtracting 5.1 from 5.3 gives:

(5.4)�E � �
a

b �F
�y �y + �F

�y �
�y � dx

Eliminating δy’ using integration by parts as described in Mathematical Note 5:

(5.5)�E � �
a

b �F
�y �y − d

dx
�F
�y �

�y dx

At extrema in E a small change in y produces almost no change in the value of the functional:

(5.6)�
a

b �F
�y − d

dx
�F
�y �

�y dx � 0

As δy is known to be non-zero, Equation 5.6 gives rise to the Euler-Lagrange Equation which

is satisfied at extrema in F:

(5.7)�F
�y − d

dx
�F
�y �

= 0

Of course, the extremum described by the Euler-Lagrange equation could be a

maximum or a point of inflection rather than a minimum. If necessary, the second-order

partial derivative (which will be positive at minima, negative at maxima, and zero at points of

inflection) can sometimes be calculated to resolve the ambiguity.
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To summarise, for a small change δy to a functional F(x, y, y’):

�E = �
a

b �E
�y(x) �y dx �E

�y(x) = �F
�y − d

dx
�F
�y �

The first variation δ / δy(x) plays the equivalent role for functionals that the first derivative

d / dx plays for functions, so that δE / δy(x) = 0 at extrema; it can therefore be used to find the

minimum energy condition for a snake.

5.2 MINIMA IN SNAKE ENERGY FUNCTIONALS

From Equation 4.1 the basic energy of an active contour model is given by:

(5.8)E( x(s) ) = �
0

1
F( s, x(s), x �(s), x ��(s) ) ds

 

 
 
 
 

x � x(s)
x

�

� �x/�s
x

��

� �2x/�s2

Consider the effect of a small change in the vector x:

(5.9)E(x + �x) = �
0

1
F(x + �x, x � + �x �, x�� + �x �� ) ds

Using the Taylor expansion:

(5.10)E + �E � �
0

1
F + �F

�x � �x + �F
�x�

� �x � + �F
�x ��

� �x �� ds

Subtracting 5.8 from 5.10:

(5.11)�E � �
0

1 �F
�x � �x + �F

�x �
� �x � + �F

�x ��
� �x �� ds

Terms in δx’ and δx’’ are eliminated using integration by parts:

(5.12)�E � �
0

1 �F
�x � �x − d

ds
�F
�x �

� �x + d2

ds2
�F
�x ��

� �x ds

Factorising:

(5.13)�E � �
0

1 �F
�x − d

ds
�F
�x �

+ d2

ds2
�F
�x ��

� �x ds

This yields the Euler-Lagrange equation for extrema in E:

(5.14)�F
�x − d

ds
�F
�x �

+ d2

ds2
�F
�x ��

= 0

Again, this equation describes all types of extrema, not just minima. Fortunately, when

minimising the energy of a snake the ambiguity is easily resolved by changing the sign of each

term in the equations of motion.

If the functional F is to represent the potential energy, tension and stiffness of a snake

then:

(5.15)F = P(x) + �
2 x � 2 +

�
2 x �� 2
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Assuming α and β are constants, the partial derivatives for Equation 5.14 are as follows:

�F
�x = �P

�x
�F
�x �

= � x� �F
�x ��

= � x ��

Combining 5.14 and 5.15 gives the minimal energy condition for a snake:

(5.16)

Energy Gradient

�P
�x − � x �� + � x ���� = 0

Unfortunately, these equations are difficult to solve analytically because x must be known

before ∂P/∂x can be found. However, the equations can be solved using semi-implicit relaxa-

tion methods as described in Section 6.
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6 SEMI-IMPLICIT MINIMISATION

Section 5 showed that, at equilibrium, each element in a snake satisfies a vector equation

which states that it does not move during time steps:

(6.1)�x
�t = � �2x

�s2 − � �4x
�s4 − �P

�x = 0

The energy of the model can therefore be minimised by solving all of these equations simulta-

neously using semi-implicit relaxation methods.

The vector terms in Equation 6.1 are separable into x and y components. Writing uj

where j = 0, 1, N–1 as a discrete approximation for x(s) or y(s), and using superscript t to

denote iteration, Equation 6.1 becomes:

(6.2)
�uj

t

�t = �
�2uj

t

�s2 − �
�4uj

t

�s4 − �P
�uj

t

 t  

 t+1 

   j     j–2    j–1    j+1    j+2  

 t+1 

 –4 

 6 

 – 2  

Fourth

Order

Order

Second

 t  

 –4 

 1  1 

 1  1 

Figure 6: Approximating Derivatives With Finite Differences. The second-order derivative
(tension force) is approximated over three elements; the fourth-order derivative (stiffness
force) is approximated over five elements. In the semi-implicit method these derivatives are
regarded as estimates for the next time step.

The derivatives in Equation 6.2 are estimated using finite differences as shown in Figure 6 and

Appendix A:

�u
�t �

uj
t+1 − uj

t

�t
�2u
�s2 �

uj+1
t+1 + uj−1

t+1 − 2uj
t+1

�s2

�4u
�s4 �

uj+2
t+1 − 4uj+1

t+1 + 6uj
t+1 − 4uj−1

t+1 + uj−2
t+1

�s4
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Note that the second and fourth derivatives are estimated as though at the next time step

(t+1)†. Combining these approximations gives the finite difference equation:

uj
t+1 − uj

t

�t
= �

�s2 uj+1
t+1 + uj−1

t+1 − 2uj
t+1

(6.3)

−
�
�s4 uj+2

t+1 − 4uj+1
t+1 + 6uj

t+1 − 4uj−1
t+1 + uj−2

t+1 − �P
�uj

t

Moving terms that cannot be estimated at time t over to the LHS gives:

buj+2
t+1 − (a + 4b)uj+1

t+1 + (1 + 2a + 6b)uj
t+1 − (a + 4b)uj−1

t+1 + buj−2
t+1

(6.4)

= uj
t + �t �P

�uj
t Note:

 

 
 

a � � �t/�s2

b � � �t/�s4

The RHS of Equation 6.4 can be evaluated using the potential energy at time t:

puj+2
t+1 + quj+1

t+1 + ruj
t+1 + quj−1

t+1 + puj−2
t+1 = ũj

t+1

 

 
 
 
 

p � b
q � −a − 4b
r � 1 + 2a + 6b

(6.5)

ũj
t+1 = uj

t + �t �P
�uj

t

This equation leads to a set of 2N simultaneous linear equations (for the x and y co-ordinates

of each element in the snake) that can be written in standard matrix form.

(6.6)

r q p p q
q r q p p
p q r q p

� � � � �
p q r q p

p p q r q
q p p q r

u0
t+1

u1
t+1

u2
t+1

�
uN−3

t+1

uN−2
t+1

uN−1
t+1

=

ũ0
t+1

ũ1
t+1

ũ2
t+1

�
ũN−3

t+1

ũN−2
t+1

ũN−1
t+1

M ut+1 = ũ t+1

The constant values making up the matrix M are as follows:

p � � �t
�s4 q � − � �t

�s2 − 4� �t
�s4 r � 1 + 2� �t

�s2 + 6� �t
�s4
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Each row of the matrix can be thought of as a convolution mask for evaluating the derivatives;

the vectors represent the positions of the snake elements, both before and after adjustment to

conform with the internal forces. Multiplying both sides of Equation 6.6 by the inverse of M

gives the final solution (see Mathematical Note 6):

(6.7)u t+1 = M−1 u t + �t �P
�u t

Note that M is a cyclic symmetric pentadiagonal banded matrix which can be inverted using

the algorithm described by Benson and Evans (1973; 1977) making the solution of

Equation 6.7 an O(N) process rather than O(N 3). If the tension and stiffness parameters and

the number of elements are constant then the inverse matrix need only be calculated once.

#define N

const alpha=1.0, beta=0.5; // tension, stiffness
const ds=1.0, ds2=ds*ds, dt=0.05; // space, time

double x[N], y[N]; // snake

// code to create snake here

do {
// external step
for(int j=0; j<N; j++) {

x[j] += dt * fx(x[j], y[j]); // image force
y[j] += dt * fy(x[j], y[j]);

}

// internal step
a=alpha*dt/ds2; b=beta*dt/ds2 // NB: constants?
p=b; q=-a-4b; r=1+2a+6b;

pentadiagonal_solve(p, q, r, x, n);
pentadiagonal_solve(p, q, r, y, n);

}
while(!equilibrium);

Algorithm 1: Semi-Implicit Energy Minimisation. This C-style pseudo-code outlines the
semi-implicit algorithm for minimising the energy of an active contour model. The
co-ordinates of the N snake elements are specified by the arrays x[s] and y[s]. The exter-
nal step moves each element according to the image forces computed using the (undefined)
functions fx() and fy(). The internal step then smoothes the model by solving a set of
equations in the form of a pentadiagonal banded matrix (see Equation 6.6). The process is
repeated until equilibrium is detected in some way. (The effects of the internal and external
steps cancel out at equilibrium.)
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The semi-implicit energy minimisation process is summarised in Algorithm 1. Each iteration

takes implicit Euler steps with respect to the internal energy, and explicit Euler steps with

respect to the external and image energy. The minimisation process is therefore stable in the

presence of very high tension and stiffness. Furthermore, with ordinary relaxation methods the

propagation of forces along a snake is slow; however, the semi-implicit procedure allows

forces to travel arbitrary distances in a single O(N) iteration.
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7 SMOOTHING AND OSCILLATION

Unfortunately, there are problems with the iterative minimisation techniques described in

Sections 4–6. The disruptive effects of unwanted local minima have already been discussed in

Section 4. In addition, to ensure that an active contour model will remain stable throughout

the minimisation process, the time step at each iteration must be very small relative to the

amount of smoothing dictated by the energy gradient. The smoothing process, and the inherent

problem of oscillation, are discussed below.

7.1 SMOOTHING

A function y can be smoothed over a series of iterations according to the diffusion equation:

(7.1)�u
�t = �2u

�s2

The process described by this equation eliminates peak values in u and makes the amplitude

of high frequencies decay very quickly towards zero; as a result, the function u is smoothed to

a line. The process is equivalent to smoothing an active region model with a tension force.

 t = 0  t = 1  t = 2 

 A 

 B 

Figure 7: Smoothing. Forces at points A and B are acting in opposite directions. At A the
acceleration along the curve is negative so the diffusion process smoothes the function
towards the baseline; the acceleration at B is positive so the value of the function increases.

7.2 OSCILLATION: COURANT-HILBERT THEORY

Another form of the diffusion equation is a Gaussian known as the heat kernel:

(7.2)g(s, t) = 1
4�t

e−s2/4t = 1
� 2�

e−s2/2�2
where � = 2t
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Solutions to this equation take the form u(s, t) = u0(s)*g(s, t); at time t the solution is therefore

the initial state blurred at scale σ.

For example, consider a function such as:

u(s) = ei�s

The derivatives in the diffusion equation can be approximated using finite differences:

�u
�t = �2u

�s2 �
us

t+1 − us
t

�t
=

us+1
t + us−1

t − 2us
t

�s2

Moving terms that can be evaluated at time t over to the RHS gives the rule for iterative

smoothing:

us
t+1 = us

t + �t
�s2

(us+1
t + us−1

t − 2us
t ) = ei�s + �t

�s2
(ei�(s+1) + ei�(s−1) − 2ei�s )

This equation can be factorised:

us
t+1 = 1 + �t

�s2
(ei� + e−i� − 2) ei�s

Using the identities eiω = cos ω + i sin ω and e−iω = cos ω − i sin ω:

us
t+1 = k ei�s where k = 1 + �t

�s2 2(cos� − 1)

The maximum value of the constant term (k = 1) occurs when cos ω = +1; the minimum

(k = 1 − 4δt / δs2 ) occurs when cos ω = −1 so that:

1 � k � 1 − 4�t
�s2

However, | k | > 1 will produce growing oscillation rather than smoothing; therefore:

1 − 4�t
�s2 � − 1 � �t < �s2

2

Recall that . Therefore:� = 2t

�� = 2�t � �� < 2 �s2

2 = �s

This inequality implies that the function u(s) cannot be smoothed by more than δs in a single

time step, or oscillation will occur.

Everything You Always Wanted To Know About Snakes…

Page 24



8 APPLICATIONS: INTER-SNAKE ENERGY

Certain applications require the simultaneous use of multiple snakes that must be carefully

co-ordinated. For example, paired snakes can be used to locate features in stereo images.

Likewise, a linked stack of snakes is a powerful tool for analysing multiple cross-sections

through three-dimensional images such as NMR data volumes. Similar principles can be used

to track moving objects through real-time image sequences.

8.1 STEREO SNAKES

In stereo images, if two features correspond then the disparity between them should vary

slowly along their contours, unless they recede in depth very quickly. This constraint is often

used in stereo-matching algorithms – for example, see Pollard et al (1985); it can also be

expressed as an energy functional linking a pair of stereo snakes:

(8.1)Estereo = 1
2 �0

1
xs

L(s) − xs
R(s) 2 ds

The subscripts indicate differentiation; xL(s) and xR(s) are snakes in the left and right images

respectively. The energy after moving one of these snakes (in this case the left) is given by:

(8.2)E(xL + �xL, xR ) = �
0

1
xs

L + �xs
L − xs

R 2 ds

The corresponding energy change is given by:

(8.3)�Estereo
L � �

0

1
(xs

R − xs
L ) � �xs

L ds = �
0

1
(xss

R − xss
L ) � �xL ds

The corresponding force laws (for both snakes) are:

(8.4)�xL = xss
R −xss

L �xR = xss
L −xss

R

During the process of localising a contour in one image, information about the corresponding

contour in the other image is also considered. The stereo match therefore affects the detection

and localisation of the features on which it is based. For further information on stereo snakes

see Kass et al (1987; 1988); Menet et al (1990); Bascle and Deriche (1993).

8.2 INTER-SLICE (VOLUME) SNAKES

Medical research is one of the most popular application domains for active contour models.

Typically, snakes are used to reconstruct three-dimensional objects, such as the ventricles of

the heart, from two-dimensional slices through data volumes – see Cohen (1991). Similarly,
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microscopic structures such as neurons can be reconstructed from spatially consecutive

electron micrographs – see Carlbom et al (1991).

A sequence of M slices through a volume of interest can be represented as mappings

into a three-dimensional Euclidean space; for each image i a contour xi(s) is defined as:

(8.5)x i(s) = ( xi(s), yi(s), zi ) � R3 where i � [1, M]

The total energy of all the contours is given by:

(8.6)Etotal = 	
i=1

M

Eimage
i + 	

i=1

M

Eintern
i + 	

i=1

M

Eextern
i + 	

i=1

M−1

	
j=i+1

M

Ecouple
ij

The energy Ecouple that arises from coupling adjacent contours is given by:

(8.7)Ecouple
ij = 
 �

0

1

x i(s) − x j(s)
2

− (zi − zj )
2 ds where j = i + 1

The coupling energy is zero for contours that are not in neighbouring images. The

non-negative parameter ζ determines the strength of the coupling force with respect to the

other forces acting on the contours. Similar techniques can be used with time varying images;

for example, Richens et al (1992) analysed images of the left ventricle during the cardiac

cycle.

8.3 INTER-FRAME SNAKES: MOTION TRACKING

Once an active contour model is locked on to a moving image feature, the model will simply

follow the corresponding energy minimum – see Kass et al (1987; 1988). Inter-frame

constraints make the tracking more robust, as does the incorporation of mass into the snake

design: new positions can then be predicted according to previous positions, velocity, and

acceleration – see Terzopoulos (1987).
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9 SUMMARY AND CONCLUSIONS

An active contour model u(s) = ( x(s), y(s) ) is characterised by an energy functional E that

includes tension and stiffness terms, and a potential energy generated by processing an image:

(9.1)E( u(s) ) = �
Potential

P(u) +
Tension

�(s) u � 2 +
Stiffness

�(s) u �� 2 ds

Note that u(0) ≡ u(N) in the discrete approximation to this equation, so the snake forms a

closed loop. Assuming that α(s) = α and β(s) = β are constants, extrema in E satisfy two

independent Euler equations:

(9.2)� u ���� − � u�� = − �P
�u

The gradient of the potential energy corresponds to an image force with components fx and fy.

The derivatives in Equation 9.2 can be approximated with finite differences:

(9.3)
� (xs−2 − 4xs−1 + 6xs − 4xs+1 + xs+2 ) − � (xs+2 + xs−2 − 2xs ) = fx(x, y)

� (ys−2 − 4ys−1 + 6ys − 4ys+1 + ys+2 ) − � (ys+2 + ys−2 − 2ys ) = fy(x, y)

The energy of the model can be minimised explicitly by moving each element in turn accord-

ing to a small fraction of the force given by this equation. Alternatively, a semi-implicit

method can be used to solve these equations for all elements of the snake simultaneously.

To use the semi-implicit method two sets of finite difference equations are formed to

describe the x and y co-ordinates of the entire snake; these equations can be written in terms of

a cyclic symmetric pentadiagonal banded matrix M based on the constants α and β:

(9.4)M�x = fx(x, y) M�y = fy(x, y)

Note that x and y are vectors containing the x and y co-ordinates of all the snake elements; fx

and fy are the corresponding vectors of image forces. After matrix inversion, these equations

can be solved iteratively by introducing a small time step τ. The internal constraints are

imposed at time t+1 after adjusting the snake according to the image forces at time t:

(9.5)
x t+1 = (M + � I)−1 � ( x t + � fx(x t, yt ) )

y t+1 = (M + � I)−1 � ( y t + � fy(x t, yt ) )

Fortunately, the matrix M + τ I need only be inverted once because it consists entirely of

constant terms. Equation 9.5 therefore provides a fast iterative method for minimising the

energy of an active contour model. The method is implicit with respect to the internal energy,

so it can deal with considerable tension and stiffness using large time steps. However, if the

image forces become large then a small time step is necessary to prevent oscillation. There is
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thus a trade-off between stability and speed: snakes converge quickly on energy minima when

large time steps are used, but are then prone to oscillate; improved stability comes from using

small time steps, but at the cost of slow convergence.

In addition to the oscillation problem, the basic active contour model suffers from at

least two other deficiencies:

� Active contour models cannot exploit information such as the texture and colour of

objects; they are limited to detecting features on the strength of the edges in an image.

� Active contour models are difficult to use when the edges of a feature are weak, noisy,

and diffuse; they tend to get distracted and trapped by nearby edges that do not belong

to the desired feature.

These weaknesses suggest that some extension to the basic snake model is needed to link it

more strongly with the image data; this extension might exploit image characteristics such as

texture and colour, as demonstrated by the active region models developed by Ivins and

Porrill (1995).
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APPENDIX A: NUMERICAL APPROXIMATIONS

This appendix gives discrete approximations for continuous derivatives.

A.1 APPROXIMATIONS FOR DERIVATIVES

Consider a function I(x, y). Formulae for the second-order partial derivatives can be derived

from the following approximations:

Ix �
I(x + �) − I(x − �)

2� Iy �
I(y + �) − I(y − �)

2�

(A.1)

Ixy �
Ix(x, y + �) − Ix(x, y − �)

2�

An expression for the second-order x derivative can be obtained using:

Ixx �
Ix(x + �) − Ix(x − �)

2�

Expanding this formula using the above approximations:

Ixx � 1
2�

I(x + � + �) − I(x + � − �)
2� − I(x − � + �) − I(x − � − �)

2�

This simplifies to:

Ixx �
I(x + 2�) + I(x − 2�) − 2I(x)

4�2

Finally, the original step size δ is halved:

(A.2)Ixx �
I(x + �) + I(x − �) − 2I(x)

�2

Note that if δ = 1 then:

Ixx � I(x + 1) + I(x − 1) − 2I(x)

An expression for the second-order y derivative can be obtained using:

Iyy �
Iy(y + �) − Iy(y − �)

2�

This formula simplifies as above to give:

(A.3)Iyy �
I(y + �) + I(y − �) − 2I(y)

�2

An expression for the derivative with respect to x, of the y derivative can be obtained using:

Ixy �
Ix(x, y + �) − Ix(x, y − �)

2�
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Expanding the x derivatives:

Ixy � 1
2�

I(x + �, y + �) − I(x − �, y + �)
2� − I(x + �, y − �) − I(x − �, y − �)

2�

This simplifies to:

(A.4)Ixy �
I(x + �, y + �) + I(x − �, y − �) − I(x + �, y − �) − I(x − �, y + �)

4�2

A.2 PASCAL’S TRIANGLE

Convolution masks for discrete derivatives of a function of one variable can be obtained from

the binomial series given by Pascal’s Triangle:

Order:

0 :
1 :
2 :
3 :
4 :

Value:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Sign:

+
+ −

+ − +
+ − + −

+ − + − +

For example, the fourth derivative of a function E(s) is given by:

dE
ds � E(s − 2) − 4E(s − 1) + 6E(s) − 4E(s + 1) + E(s + 2)

A.3 IMAGE PROCESSING MASKS

Pascal’s Triangle and Equations A.1–A.3 are ideal for finding the derivatives of parametric

curves such as snakes. However, a slightly different format is required when calculating image

gradients. Simple image processing masks for first- and second-order derivatives follow:

�
�x � +1 0 −1 �

�y �
+1
0
−1

Note that each mask operates with unit step size δ = 1:

�2

�x2 � +1 −2 +1 �2

�x�y � 1
4

−1 0 + 1
0 0 0
+1 0 − 1

�2

�y2 �
+1
−2
+1
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APPENDIX B: MATHEMATICAL NOTES

This appendix briefly reviews six mathematical topics: parametric form; the characteristics of

extrema in functions; the Taylor series; local approximation using partial derivatives; integra-

tion by parts; and the use of matrix inversion to solve sets of linear equations.

NOTE 1: PARAMETRIC FORM

If two variables x and y are each expressed in terms of a third variable, such as time t, then

x = f(t) and y = g(t) is the parametric form of the equation relating x and y. The variable t is

known as the parameter.

The first and second derivatives of a parametric equation are found as follows:

dy
dx =

dy
dt

dt
dx

d2y
dx2 = d

dt
dy
dx

dt
dx

For example, the parametric equations for an ellipse aligned with the co-ordinate axes are:

y = b sin� x = a cos �

Note that a and b are constants. To find the first derivative as a function of the parameter:

dy
d� = b cos � dx

d� = −a sin�

Therefore:

dy
dx =

dy
d�

d�
dx = b cos � 1

−a sin � = − b
a cot �

Similarly, to find the second derivative as a function of the parameter:

d
d�

dy
dx = b

a csc2�

Therefore:

d2y
dx2 = d

d�
dy
dx

d�
dx = b

a csc2� −1
a sin� = − b

a2 sin3�

NOTE 2: EXTREMA

If x0 is a global minimum of E(x) then throughout the interval over which the function exists:

E(x0 ) < E(x) 	x : x 
 x0

If x0 is a local minimum then there exists an interval such that:

E(x0 ) < E(x) 	x � [x0 − �1, x0 + �2 ] : x 
 xo
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Candidates for minima of a smooth functions are given by stationary and end points as shown

in Figure B.1.

� Stationary points. The condition dE/dx = 0 is necessary for a local minimum;

however, it is not sufficient. A sufficient check for twice-differentiable functions is to

examine the second-order differential coefficient, which should be positive.

� End points. Extrema (usually local) occur at the limits of the interval over which a

function is defined.

Real minimisation problems typically involve convoluted multi-dimensional hypersurfaces

with numerous local minima.

Maximal End Point

Local
Minimum

Global

Point Of

Inflection

Global Maximum

Local

Maximum

Minimum

 E 

 δ1  δ2

Minimal

End Point

 x 

Figure B.1: Extrema In A 1-D Energy Surface. This diagram shows examples of local and
global maxima and minima, end points, and a point of inflection, for a scalar function E(x).

NOTE 3: TAYLOR’S THEOREM

Consider a d-times differentiable function:

E : x � y = E(x) : R � R

The result of a small change h to this function can be approximated using the Taylor series:

E(x + h) = E(x) + h E �(x) + h2

2! E ��(x) + � + hd

d! Ed(x) + R

The remainder R is smaller than any of the terms before it in the series.
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This theorem can be used to approximate changes in energy functionals; for example,

consider the case when E(x) is at least once differentiable:

E(x + h) �
Constant

E(x) +
Linear

h E �(x)

This equation describes a straight line; it can be used to approximate E for parameter values

near x. The more derivatives that are included in the series, the more accurate the approxima-

tion becomes. (The equation will describe a quadratic, cubic, or higher-order polynomial as

more terms are added).

NOTE 4: LOCAL LINEAR APPROXIMATION

If z is a function of x and y so that z = f(x, y), and if x and y change by small amounts δx and

δy, then the change in z will also be relatively small:

�z = A �x + B �y + higher terms

Note that higher powers of δx and δy can be ignored if the changes are small; A and B are

unknown functions of x and y. If y is kept constant (δy = 0) then

�z = A �x + higher terms � �z
�x � A

Therefore, at the limit of infinitesimal steps:

�x � 0 � A = �z
�x

A similar expression can be derived for the function B. Therefore:

�z � �z
�x �x + �z

�y �y

This result is quite general and can be extended to functions of many independent variables.

For example, if z = f(w, x, y) then for small changes:

�z � �z
�w �w + �z

�x �x + �z
�y �y

NOTE 5: INTEGRATION BY PARTS

The integration of some products requires the use of the following identity:

�
a

b
u dv

ds ds � uv
a

b
− �

a

b
v du

ds ds

The identity can often be used to simplify terms that contain powers, derivatives, logarithms,

exponentials, or trigonometric functions. Care must be taken when deciding which factor to
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differentiate and which to integrate. Note that if either u(a) = u(b) = 0 or v(a) = v(b) = 0, or if

the function is periodic such that u(a) = u(b) and v(a) = v(b), then the identity simplifies to:

�
a

b
u �v � − �

a

b
uv �

NOTE 6: SOLVING LINEAR EQUATIONS BY MATRIX INVERSION

Consider a set of linear equations such as:

a11x1 + a12x2 � a1NxN = b1

a21x1 + a22x2 � a2NxN = b2

� � � �
aN1x1 + aN2x2 � aNNxN = bN

These equations can be rewritten as a matrix multiplication:

a11 a12 � a1N

a21 a22 � a2N

� � � �
aN1 aN2 � aNN

x1

x2

�
xN

=

b1

b2

�
bN

M x b

Multiplying both sides of this equation by the inverse of M gives:

M−1M x = M−1b Note: M−1M = I

Therefore, pre-multiplying b by the inverse of the matrix of coefficients M gives the

solutions:

x = M−1 b
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