

Nullary ComputerNullary Computer

Edwin Andrés Niño VelásquezEdwin Andrés Niño Velásquez

Nullary ComputerNullary Computer
Brian Huck has invented a new powersaving computer. With the current CMOS
based processors, a certain amount of power is lost each time a bit is changed
from 0 to 1 or back. To avoid this problem, Brian’s new Nullary Core stores only
zeros. All numbers are stored in nullary form, as shown:

 0
 1 0
 2 00
 3 000
 4 0000
 ...

As an examples we can give programs which calculate prime numbers. His initial
64-nit model has 26 registers, each of which may store up to 64 nits, and any
attempt to store more than 64 nits will result in a run time error. There is also a
flag register, which contains either a zero, or nothing.

Instruction setInstruction set

The instruction set is as follows (include an explanation and how to simulate
In C):

 A : Add a zero to the value in register A (similarly for all uppercase letters)
: a++; in C.

 a : First, empty the flag register. Then, if possible, remove a zero from
register A, and place it in the flag register (similarly for all lowercase
letters) : flag = 0; if(a>0) flag=1; a--; in C.

 (: If the flag register is empty, jump past the matching). Otherwise,
empty the flag register: while(flag) { flag=0; in C.

) : Jump to the matching (: } in C.

TaskTask
Your task will be to write a sorting program for Brian’s Nullary Corebased
Prototype Computer. The NCPC has limited memory, so your program must
be no longer than 5432 instructions. Also, the running time of your program
must be no more than 5*106 steps for any possible input, where a step is
considered to be the execution of one instruction. Important note: You must
submit the nullary source code of this program, and not some Java, C or
C++ source code.

 Input

The numbers to be sorted will be given in the first 24 registers A-X;
the remaining two registers (Y and Z) will be empty.

 Output

The sorted numbers should be in registers A through X, in
increasing order. Register Y and Z should be empty.

Sample programsSample programs

 b(b)a(Ba)

Move register A to register B (by first emptying register B, then
repeatedly pulling a single zero from register A and placing it into
B).

 XXXa(GIa)i(g(FYg)y(Gy)f(Zb(z)z(i(YBi)y(Iy))f)Zb(zb)z(xz)i)x

Set the flag register if the number of zeros in register A is prime.

Basic CommandsBasic Commands

 aA--

 AA++

 <Assign B C>b(ab)<Assign C B>A-=B {C}

 <Assign B C>b(Ab)<Assign C B>A+=B {C}

 <Reset B><Reset C>a(BCa)<Move C A>Assign A B {C}
 (B<-A)

 <Reset B>a(Ba)Move A B

 a(a)Reset A (A<-0)

IFIF

 <Assign A D><Assign B E>d(ed)e(…c(c))IF_LT A B {C}

 <Assign A D><Assign B E>e(de)d(…c(c))IF_GT A B {C}

LoopsLoops

 <Reset B><While_LT B A> (… B) For0 B A {D,E}
(For b=0 to A-1)

 <Reset B><While_LT B A> (B …) For1 B A {D,E}
(For b=1 to A)

 <Assign A D><Assign B E> d(ed)e
 (… <Assign A D><Assign B E>d(ed)e)

While_LT A B {D,E}

 <Assign A D><Assign B E> e(de)d
 (… <Assign A D><Assign B E>e(de)d)

While_GT A B {D,E}

Using LoopsUsing Loops

 <FOR1 C B>(<A*=A>)A^=B {C}

<Reset C>C<FOR1 D B>(<C*=A>)C = A^B

<D=A/B><D*=B><Assign A C><C-=D>C = A%B

<Reset C><WHILE_LT A B>(C<A-=B>)A
<IF_GT A B>(C)

C = A/B

 <Reset C>C<FOR1 D B>(<C+=A>) C = A*B {D}

 <Assign A D><FOR1 C B>(<A+=D>)
 <A-=D>

A*=B {C}

