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Divisibility

N ={1,2,3,4,· · · } Set of natural numbers
Z = {· · · ,-3,-2,-1,0,1,2,3,· · · } Set of integer numbers

Z+ = {1,2,3, · · · } Set of positive integer numbers
Z− = {· · · ,−3,−2,−1} Set of negative integer numbers

Divition: a|b (read a divides b), if ∃ c ∈ Z : b = a · c.

Divisibility Properties:

(i) a|a

(ii) a|b ∧ b|c⇒ a|c

(iii) a|b ∧ a|c⇒ a|(bx + cy), ∀x, y ∈ Z

(iv) a|b ∧ b|a⇒ a = ±b

a|b does not imply b|a. Find a counterexample.

Criptograf��a 2

Division Theorem

∀a, b ∈ Z,∃ unique q, r ∈ Z : a = qb + r,0 ≤ r ≤ |b|.

• q = ⌊a/b⌋ is called quotient of the division.

• r = a mod b and is called remainder (or residue).

Example: a = 36, b = 16

a = qb + r

36 = 2 · 16 + 4

q = 2, r = 4
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Divisor, GCD, Prime, Composite

Divisor: c is a common divisor of a, b if c|a ∧ c|b.

Greatest Common Divisor (GCD): d = gcd(a, b) if d is a common
divisor of a and b, and ∀c, c|a ∧ c|b ∧ c|d, Note that d ≥ 1.

The integer p > 1 is a prime if its only divisors are 1 and p.

An integer a > 1 that is not a prime is called a composite number (or
a composite).

Integer 1 (one) is neither prime nor composite but a unit.

Integer 2 (two) is a prime (the only even one).
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Congruent Modulo n

a ≡ b (mod n) iff

{

n|(a− b)
a mod n = b mod n

Proof:

a mod n = b mod n a mod n =
a− kn = b− k′n a− n⌊a/n⌋ =

a− b = k′′n ⇒ n|(a− b) a− nk

�

Example: 24 ≡ 9 (mod 5)

a = b mod n ⇒ a ≡ b (mod n)

a ≡ b (mod n) ⇒/ a = b mod n
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Equivalence Class Modulo n

[r]n = {r + kn : k ∈ Z}

Example:

[0]7 = {· · · ,−21,−14,−7,0,7,14, · · · }
[1]7 = {· · · ,−20,−13,−6,1,8,15, · · · }
[2]7 = {· · · ,−19,−12,−5,2,9,16, · · · }
[3]7 = {· · · ,−18,−11,−4,3,10,17, · · · }
[4]7 = {· · · ,−17,−10,−3,4,11,18, · · · }
[5]7 = {· · · ,−16,−9,−2,5,12,19, · · · }
[6]7 = {· · · ,−15,−8,−1,6,13,20, · · · }

a ∈ [b]n is equivalent to writing a ≡ b(mod n).
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Integers Modulo n (Zn)

Zn = {[r]n : 0 ≤ r ≤ n− 1} = {0,1,2, · · · , n− 1}

Example:

Z3 = {0,1,2}
Z7 = {0,1,2,3,4,5,6}
Z14 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13}
Z18 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}

Criptograf��a 7



Multiplicative Inverse

x ∈ Zn s.t. ax ≡ 1 (mod n)

x is denoted by a−1

Example: Z4 = {0,1,2,3}, 3x ≡ 1 (mod 4), x=3

Fact 1: a ∈ Zn; a is invertible iff gcd(a, n) = 1

(⇐) ax + ny = 1
n(−y) = ax− 1 → n|(ax− 1) → ax ≡ 1(mod n).

�

Exercise: in Z9 which integers are invertible and what are their inverse.
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Factorization

n ≥ 2 has a unique factorization as a product of distinct prime powers.

n = p
e1
1 p

e2
2 · · · p

ek
k , pi = prime, ei ∈ Z

+ 1 ≤ i ≤ k

Example: 24

24 2
12 2
6 2
3 3
1

24 = 2331
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GCD

a = p
e1
1 p

e2
2 · · · p

ek
k

b = p
f1
1 p

f2
2 · · · p

fk
k

gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · p

min(ek,fk)
k

Example: Compute gcd(210,126)

210 2 126 2
105 3 63 3
35 5 21 3
7 7 7 7

1 210 = 21315171 1 126 = 213271

gcd(210,126) = 21315071 = 2 · 3 · 7 = 42
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Relatively Prime

Two integers a, b are called relatively prime if gcd(a, b) = 1

Example:

• 234 and 67 are relatively prime because gcd(234,67) = 1

• 321 and 34 are relatively prime because gcd(321,34) = 1

• 762 and 105 are NOT relatively prime because gcd(762,105) = 3

Exercise: Are 123 and 45 relatively prime?
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Multiplicative Group of Zn

Z
∗
n = {a ∈ Zn : gcd(a, n) = 1}

φ(n)=|Z∗n|= number of integers [0, n− 1] which are relatively prime to n

a) φ(p) = p− 1 if p is prime

b) φ(nm) = φ(n)φ(m) if gcd(n, m) = 1

c) φ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pk

) if n = p
e1
1 p

e2
2 · · · p

ek
k

Exercise: Proof a) using c) [Hint: use n = pq]

Example: Find φ(21)

Z∗21 = {1,2,4,5,8,10,11,13,16,17,19,20}, φ(21) = φ(3)φ(7) = 12
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Euler’s Theorem

if a ∈ Z
∗
n, aφ(n) ≡ 1 (mod n)

Proof:

gφ(n) ≡ 1 (mod n)

a ∈ Z∗n ⇒ ∃x : a ≡ gx (mod n)

aφ(n) ≡ (gx)φ(n) (mod n) ≡ (gφ(n))x ≡ 1 (mod n)

�
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Fermat’s Little Theorem

if gcd(a, p) = 1, ap−1 ≡ 1 (mod p)

p is prime.

Proof:

Using Euler’s Theorem

�
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EEA - Extended Euclidean Algorithm

INPUT: a, b ∈ Z
+
, a ≥ b

OUTPUT: (d, x, y), d=gcd(a, b), x, y ∈ Z : ax + by = d

Pseudo-code:

1 procedure EEA(a, b) { q ← ⌊a/b⌋ }

2 begin

3 if b=0 then return (a,1,0)

4 (d′, x′, y′) ← EEA(b, a mod b)

5 (d, x, y) ← (d′, y′, x′ − qy′)

6 return (d, x, y)

7 end
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EEA - Extended Euclidean Algorithm
Example

Compute EEA(372, 321)

a b q d x y

372 321 1 3 -44 51 ⊲ −44× 372 + 51× 321 = 3

321 51 6 3 7 -44 ⊲ 7× 321 +−44× 51 = 3

51 15 3 3 -2 7 ⊲ −2× 51 + 7× 15 = 3

15 6 2 3 1 -2 ⊲ 1× 15 +−2× 6 = 3

6 3 2 3 0 1 ⊲ 0× 6 + 1× 3 = 3

3 0 – 3 1 0 ⊲ 1× 3 + 0× 0 = 3
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PowerMod - Modular Exponentiation

INPUT: a, b, n ∈ Z

OUTPUT: z = ab mod n

Pseudo-code:

1 procedure PowerMod(a, b, n) { 〈bk, bk−1, . . . , b0〉2 ← b, z ← 1}

2 begin

3 for i← k downto 0 do

4 if bi=1 then z ← (z2 × a) mod n

5 else z ← z2 mod n

6 od

7 return z

8 end
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PowerMod - Modular Exponentiation
Example

Compute PowerMod(5,18,17)

a = 5
b = 1810 = 〈10010〉2
n = 17

i 4 3 2 1 0

bi 1 0 0 1 0

z 5 8 13 12 8

Then 5
18

mod 17 = 8

Exercise: Compute PowerMod(7,452,31)
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CRT - Chinese Remainder Theorem

The following problem was posed by Sunzi [Sun Tsu] (4th century AD)
in the book Sunzi Suanjing:

“There are certain things whose number is unknown. Re-

peatedly divided by 3, the remainder is 2; by 5 the remain-

der is 3; and by 7 the remainder is 2. What will be the

number?”

CRT was commonly known as General Sun counting the soldiers or

General Han counting the soldiers.
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Oystein Ore mentions another puzzle with a dramatic element from
Brahma-Sphuta-Siddhanta (Brahma’s Correct System) by Brahmagupta
(born 598 AD):

“An old woman goes to market and a horse steps on her

basket and crashes the eggs. The rider offers to pay for

the damages and asks her how many eggs she had brought.

She does not remember the exact number, but when she

had taken them out two at a time, there was one egg left.

The same happened when she picked them out three, four,

five, and six at a time, but when she took them seven at

a time they came out even. What is the smallest number

of eggs she could have had?”

Problems of this kind are all examples of CRT
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CRT - Definition

Let n1, n2, . . . , nk be pairwise relatively prime integers. If a1, a2, . . . , ak are
any integers, then the system of simultaneous congruences

x ≡ ai (mod ni) ∀i ∈ {1 . . . k}

has a unique solution modulo N = n1n2 . . . nk

x =
k

∑

i=1

Niyiai mod N

where Ni=N/ni and yi=N−1
i mod ni
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Example

k=2, n1=5, n2=3

N=n1n2=5×3=15

π(x)=(x mod 5, x mod 3) : Z15 → Z5 × Z3

x 0 1 2 3 4 5 6 7

π(x) (0,0) (1,1) (2,2) (3,0) (4,1) (0,2) (1,0) (2,1)

x 8 9 10 11 12 13 14

π(x) (3,2) (4,0) (0,1) (1,2) (2,0) (3,1) (4,2)

0 1 2

0 0 10 5
1 6 1 11
2 12 7 2
3 3 13 8
4 9 4 14
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N1 = N/n1 = 15/5 = 3
N2 = N/n2 = 15/3 = 5

y1 = N−1
1 mod n1 = 3−1 mod 5 = 2

y2 = N−1
2 mod n2 = 5−1 mod 3 = 2

x = π−1(a1, a2) = (N1y1a1 + N2y2a2) mod N
= (3× 2a1 + 5× 2a2) mod 15
= (6a1 + 10a2) mod 15

for a1=1 and a2=2 we get

x ≡ 1 (mod 5)
x ≡ 2 (mod 3)

x = π−1(1,2) = (6× 1 + 10× 2) mod 15
= (6 + 20) mod 15
= 26 mod 15
= 11

11 mod 5 = 1
11 mod 3 = 2
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The Order of an Integer

Let a ∈ Z∗n.

ord(a) = min(t : at ≡ 1 (mod n) )

Exercise: Find the order of 5 with the following moduli

i) 7
ii) 11
iii) 21
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Primitive elements in Z∗p

for p=prime, α is called a primitive element modulo p if

Z
∗
p = {αi mod p : i ∈ Z

∗
p}
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Example

For p=13 find all the possible primitive elements modulo 13.

t 1 2 3 4 5 6 7 8 9 10 11 12

2t mod 13 2 4 8 3 6 12 11 9 5 10 7 1

3t mod 13 3 9 1 3 9 1 3 9 1 3 9 1

4t mod 13 4 3 12 9 10 1 4 3 12 9 10 1

5t mod 13 5 12 8 1 5 12 8 1 5 12 8 1

6t mod 13 6 10 8 9 2 12 7 3 5 4 11 1

7t mod 13 7 10 5 9 11 12 6 3 8 4 2 1

8t mod 13 8 12 5 1 8 12 5 1 8 12 5 1

9t mod 13 9 3 1 9 3 1 9 3 1 9 3 1

10t mod 13 10 9 12 3 4 1 10 9 12 3 4 1

11t mod 13 11 4 5 3 7 12 2 9 6 8 10 1

12t mod 13 12 1 12 1 12 1 12 1 12 1 12 1

a 1 2 3 4 5 6 7 8 9 10 11 12
ord(a) 1 12 3 6 4 12 12 4 3 6 12 2

Hence, the primitive elements modulo 13 are 2, 6, 7 and 11.Criptograf��a 26

Public-key Cryptography (PKC)

• PKC is also known as asymmetric cryptography.

• A problem with symmetric key cryptosystems is key distribution and
key management.

• In PKC key management is much simpler

– only decryption key must be kept secret

– encryption key can be published

– computing private key from their corresponding public key is in-
feasible

• In PCK no key exchange between users is necessary

• PCK not only simplify key management but can also be used to
generate digital signatures.
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A Postal Analogy

In this example Alice has the secret message and wants to send it to
Bob, after which Bob sends a secret reply.

Assume that the message is send in a box with a clasp ring.

Bob and Alice have separate open padlocks with their names, freely
available in a place such as a post office.

Alice

Bob

Post Office

Firstly, Alice gets Bob’s open padlock from the postoffice.
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A Postal Analogy (cont.)

Alice uses Bob’s padlock to lock a box containing her message, and sends
the locked box to Bob.

Bob can then unlock the box with his key and read the message.

To reply, Bob must similarly get Alice’s open padlock to lock the box
before sending it back to her.

The critical advantage in an asymmetric key system is that Bob and

Alice never need send a copy of their keys to each other.
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RSA Public-Key Cryptosystem
Ronald Rivest, Adi Shamir, Leonard Adleman, 1977

RSA was named after its developers Ronald Rivest, Adi Shamir, and
Leonard Adleman.

Adi
Ron Len

RSA Security released the patent into the public domain in 2000.

RSA is the most widely use PKC.

Its security is based on the intractability of the integer factorization

problem.
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RSA Crytosystem

(a) Encipherment (b) Decipherment

c=m ne mod m=c nd mod
m mc c

(d, n)(e, n)

Public key Private key
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RSA Crytosystem (cont.)

(a) Key Generation:

1) Generate two large random primes p and q (p 6= q and |p| ≈ |q|)

2) Compute n = pq and φ = (p− 1)(q − 1)

3) Select a random integer e, 1 < e < φ such that GCD(e, φ)=1

4) Use EEA(φ, e) algorithm to find y (d) such that ed ≡ 1(mod φ)

5) Publish (e, n) as RSA public key

6) Keep (d, n) as RSA secret key
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RSA Crytosystem (cont.)

(b) Encryption:

1) Compute m = m1, m2, . . . , mt such that mi < n ∀i ∈ {1, . . . , t}

2) Compute ci=PowerMod(mi, e, n) ∀i ∈ {1, . . . , t}

(c) Decryption:

1) Compute mi=PowerMod(ci, d, n) ∀i ∈ {1, . . . , t}
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Example

Doing business on the internet requires you (client) to send personal
information (e.g. credit card numbers) to a business (server). To do this
securely, your client software must encrypt your credit card number so
that others cannot intercept it. It is currently done with RSA encryption
software. The following is a much too simple example, but it doesn’t
burden us with large numbers.

(a) Key Generation:

1) Let p=47, q=71

2) Let n = pq =3337, φ = 46× 70 = 3220

3) Choose e (at random) to be 79
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4) Compute EEA(3220, 79) to find d

φ e q gcd(φ, e) x y

3220 79 40 1 -25 1019 ⊲ d = 1019

79 60 1 1 19 -25

60 19 3 1 -6 19

19 3 6 1 1 -6

3 1 3 1 0 1

1 0 – 1 1 0

5) Public key = (79, 3337)

6) Private key = (1019, 3337)
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(b) Encryption:

To encrypt a credit card m=6882 3268 7966 6683 we break it into smaller
numbers such that mi < n ∀i ∈ {1, . . . , t}. For example.

m1=688, m2=232, m3=687, m4=966, m5=668, m6=3

ci=PowerMod(mi, 79, 3337) ∀i ∈ {1, . . . ,6}
b = 7910 = 〈1001111〉2
n = 3337

i 6 5 4 3 2 1 0
bi 1 0 0 1 1 1 1

m1 688 2827 3151 2564 1574 595 1570 =c1
m2 232 432 3089 3253 1862 391 2756 =c2
m3 687 1452 2657 3085 2647 1308 2091 =c3
m4 966 2133 1358 1637 2463 80 2276 =c4
m5 668 2403 1399 364 77 2890 2423 =c5
m6 3 9 81 2998 1052 3134 158 =c6

c = 1570 2756 2091 2276 2423 158

This message is then sent across the network to the server
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(c) Decryption:

Decrypting the message is done at the server. The server knows d, which
the client doesn’t, so the server can decrypt the above message.

mi=PowerMod(ci, 1019, 3337) ∀i ∈ {1, . . . ,6}
b = 101910 = 〈1111111011〉2
n = 3337

i 9 8 7 6 5 4 3 2 1 0

bi 1 1 1 1 1 1 1 0 1 1

c1 1570 796 735 1308 1733 2752 2880 1955 2535 688 =m1

c2 2756 2560 2206 740 654 57 1073 64 2842 232 =m2

c3 2091 605 640 2517 179 782 1665 2515 2814 687 =m3

c4 2276 2407 2752 1582 890 2013 2784 2142 292 966 =m4

c5 2423 374 480 2459 2889 1445 2146 256 2583 668 =m5

c6 158 3315 3058 2033 521 554 2781 2132 1200 3 =m6

Getting back the original message m=6882 3268 7966 6683
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