STOCHASTIC DYNAMIC PROGRAMMING

By: Andres Pachón Arias

STOCHASTIC DYNAMIC PROGRAMMING

Deterministic dynamic programming: given a state and a decision, both the immediate payoff and next state are known

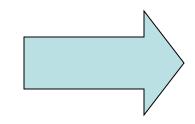
Stochastic Dynamic Programming: immediate payoff and next state are known as a probability function

The basic ideas of determiningstages, states, decisions, andrecursive formulas still hold: they simply take on a slightly different form

EXAMPLE

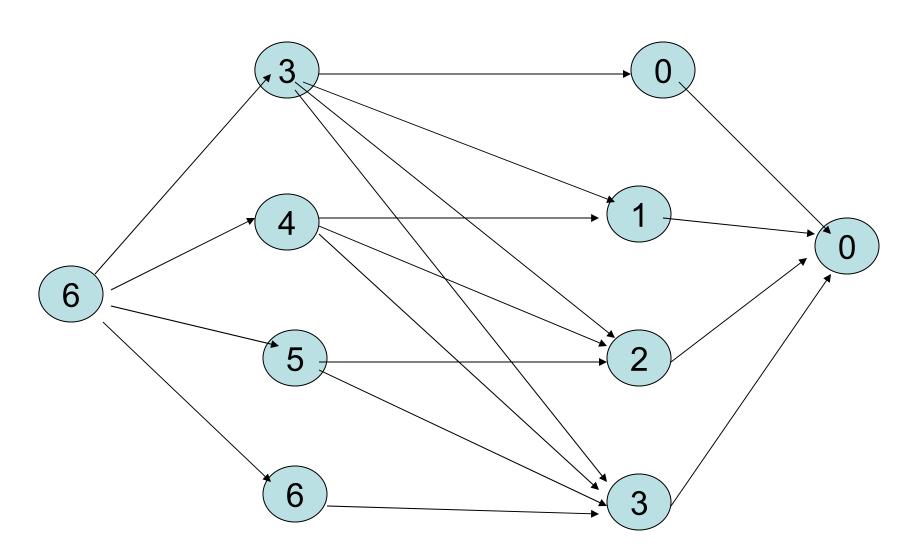
Consider a supermarket chain that has purchased 6 gallons of milk from a local dairy .The chain must allocate the 6 gallons to its three stores .If a store sells a gallon of milk, then the chain receives revenue of \$2 .Any unsold milk is worth just \$.50 .Unfortunately, the demand for milk is uncertain, and is given in the following table

Store	Dem and	${f Probability}$
	1	.60
1	2	.00
	3	.40
2	1	.5
	2	.1
	3	.4
3	1	.4
	2	.3
	3	.3


Goal of the chain is tomaximize the expected revenue from these 6 gallons

Difference: the revenue is not known for certain

Determine an expected revenue for each allocation of ..milk to a store


Store	Dem and	Probability
	1	.60
1	2	.00
	3	.40
2	1	.5
	2	.1
	3	.4
3	1	.4
	2	.3
	3	.3

${\bf Store}$	Allocation	${\bf Value}$
	1	2
1	2	3.1
	3	4.2
	1	2
2	2	3.25
	3	4.35
	1	2
3	2	.3.4
	3	4.35

Stages: One for each store

States: Number of allocated gallons of milk

If we let the last table be represented by $r_i(k)$ (the value of giving k gallons to store i), then there cursive :formulas are

$$f_3(oldsymbol{x}) = r_3(oldsymbol{x})$$
 $f_i(oldsymbol{x}) = \max_{k \leq x} \{r_i(k) + f_{i+1}(oldsymbol{x} - k)$

We could use amemorization table with the maximum expected revenue at stage i in state $x = f_i(x)$

