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Introduction

Learning from data (�nding patterns in data) without
controlling the generalisation error makes no sense. If our goal
is to predict.

Hence the learning machine looks for a model that does not
fail in the entire problem domain.

But we do not now the whole set of domain's instances, we
only know some examples from which we have to extract the
signi�cant patterns.

Then, the best we can do is to �x an acceptable level of error
and then to bound the probability that the machine learner
makes such error.
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Introduction (cont.)

Which factors have to be controlled to guarantee good
generalisation.

VC theory is the most appropriate to describe SVMs.

VC theory place reliable bounds on the generalisation of linear
classi�ers and hence indicate how to control the complexity of
linear functions in kernel spaces.
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Probably Approximately Correct Learning

Rates of uniform convergence, frequentist inference (statistics)

PAC (computer science)

Training and test data are generated i.i.d. according to an
unknown but �xed distribution D.
Distribution over input/output pairings (x , y) ∈ X × {−1, 1}
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Probably Approximately Correct Learning(cont.)

Natural measure of error is the probability that a randomly
generated example is misclassi�ed

errD (h) = D {(x , y) : h (x) 6= y}

where h is a classi�cation function

Such measure is known as risk functional

Aim: to assert bounds on this error in terms of several
quantities: number of training examples is perhaps the most
crucial of those quantities

PAC results presented as bounds on the number of examples
required to obtain a particular level of error, a.k.a. sample

complexity of the learning problem
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Probably Approximately Correct Learning (cont.)

Fixed inference rule for selecting a hypothesis hS from the
class H of classi�cation rules at the learner's disposal based on

S = {(x1, y2) , . . . , (x`, y`)}

chosen i.i.d. according to D
errD (hS) as a random variable depending on the random
selection of the training set.

Aim: to bound the expected generalisation error. Expectation
is taken over the random selection of training sets of a
particular size `
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Probably Approximately Correct Learning (cont.)

PAC bounds the tail δ of the distribution of errD (hS) . So, the
pac bound has the form ε = ε (`,H, δ) and asserts that with
probability at least 1− δ over randomly generated training sets
S of size ` the generalisation error of the selected hypothesis
hS will be bounded by

errD (hS) ≤ ε (`,H, δ)

i.e. it is probably approximately correct (pac).
It is equivalent to say that the probability that the training set
give rise to a hypothesis with large error is small

D` {S : errD (hS) > ε (`,H, δ)} < δ

This is a �avour of statistical test, the di�erence is that our
bound should be distribution free.
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Vapnik Chervonenkis Theory

For a �nite set of hypothesis it is not hard to obtain a bound
in the form of inequality

D` {S : errD (hS) > ε (`,H, δ)} < δ

Inference rule: to select any hypothesis h that is consistent
with the training examples in S .

Probability that all ` of the independent examples are
consistent with h for which errD (h) > ε is bounded by

D` {S : h consistent and errD (h) > ε} ≤ (1− ε)` ≤ exp (−ε`)
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Vapnik Chervonenkis Theory (cont.)

Assuming that all |H| of the hypothesis have large error, the
probability that one of them is consistent with S is at most

|H| exp (−ε`)

This bounds the probability that a consistent hypothesis hS
has error greater than ε

D` {S : hS consistent and errD (h) > ε} < |H| exp (−ε`)
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Vapnik Chervonenkis Theory (cont.)

In order to ensure the right hand side is less that δ, we set

ε = ε (`,H, δ) =
1
`
ln
|H|
δ

This shows how the complexity (number of choices) of the
function class H has a direct e�ect on the error bound.

Major contribution of VC's theory was to extend such an
analysis to in�nite sets of hypothesis.
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Vapnik Chervonenkis Theory (cont.)

The key to bounding over and in�nite set of functions is to
bound the pac probability as

D` {S : ∃h ∈ H : errS (h) = 0, errD (h) > ε}

≤ 2D2`
{
SŜ : ∃h ∈ H : errS (h) = 0, err

Ŝ
(h) > ε`/2

}
which follows from an application of Cherno� bounds provided
` > 2/ε

Quantity on the right hand side is bounded by �xing the 2`
sample and counting di�erent orders in which the points might
have been chosen while still keeping all the errors in the
second sample
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Vapnik Chervonenkis Theory (cont.)

Since each permutation is equally likely, the fraction of those
permutations that satisfy the property is an upper bound of its
probability.

By only considering permutations that swap corresponding
points from the �rst and second sample, we can bound the
fraction by 2−ε`/2 independently of the particular set of 2`
sample points.

Considering errors over a �nite set of 2` sample points is that
the hypothesis space becomes �nite, since there cannot be
more than 22` classi�cation functions on 2` points.
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Vapnik Chervonenkis Theory (cont.)

To obtain and union bound on the overall probability of the
right hand side, all that is required is a bound on the size of
the hypothesis space when restricted to 2` points, a.k.a. the
growth function

BH (`) = max
(x1,...,x`)∈X

|{(h (x1) , h (x2) , . . . , h (x`)) : h ∈ H}|

this quantity cannot exceed 2` since the sets over which the
maximum is sought are all of the set of binary sequences of
length `
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Vapnik Chervonenkis Theory (cont.)

A set of points {x1, . . . .x`} for which the set
{(h (x1) , h (x2) , . . . , h (x`)) : h ∈ H} = {−1, 1}` is said to be
shattered by H.

If there are sets of any size which can be shattered then the
growth function is equal to 2` for all `.
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Vapnik Chervonenkis Theory (cont.)

Final ingredient in the VC theory is the analysis of the case
when there is a �nite d which is the largest size of shattered
set. In this case, the growth function can be bounded as
follows for ` ≥ d

BH (`) ≤
(
e`

d

)d

giving polynomial growth with exponent d (the VC dimension).
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Vapnik Chervonenkis Theory (cont.)

Putting this bound in the bound obtained for in�nite set of
functions we get

D` {S : ∃ ∈ H : errS (h) = 0, errD (h) > ε} ≤ 2

(
2e`
d

)d

2−ε`/2

resulting in a pac bound for any consistent hypothesis h of

errD (h) ≤ ε (`,H, δ) =
2
`

(
d log

2e`
d

+ log
2
δ

)
provided d ≤ ` and ` > 2/ε
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Vapnik Chervonenkis Theory (cont.)

Remark: For in�nite set of hypotheses the problem of
over�tting is avoidable and the measure of complexity that
should be used is the VC dimension.

Remark: The size of the training set required to ensure good
generalisation scales linearly with this quantity in the case of
consistent hypothesis.

Remark: VC theory provides a distribution free bound on
generalisation of a consistent hypothesis.
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Vapnik Chervonenkis Theory (cont.)

Remark: for a hypothesis class with high VC dimension there
exist input probability distributions which will force the learner
to require a large training set to obtain a good generalisation
(VC dimension charaterises learnability in the pac sense)

Remark: It is possible that a class with high VC dimension is
learnable if the distribution is benign. An essential fact for the
performance of SVMs, which are designed to take advantage
of such benign distributions
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Vapnik Chervonenkis Theory (cont.)

To apply the theory to linear machines we have to calculate
the VC dimension of a linear function class L in <n in terms of
n, that is determine what is the largest number d of examples
that can be shattered by L

Proposition:

Given any set S of n + 1 training examples in general position

there exist a function in L that consistently classi�es S ,

whatever the labeling of the training points in S

For any set of ` > n + 1 inputs, there is at least one

classi�cation that cannot be realised by any function in L.
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Vapnik Chervonenkis Theory (cont.)

So far, the theory only applies when the hypothesis is
consistent with the training data.

The theory can be adapted to allow for a number of errors in
the training set by counting the permutations which have no
more errors on the left hand size
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Vapnik Chervonenkis Theory (cont.)

The resulting bound on generalisation error is given by

errD (h) ≤ ε (`,H, δ) =
2k
`

+
4
`

(
d log

2e`
d

+ log
2
δ

)
where k is the number of errors on the classi�cation of the
training set.
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Vapnik Chervonenkis Theory (cont.)

A learning algorithm should seek to minimise the number of
training errors since everything else has been �xed by the
choice of H (empirical risk minimisation)

This bound can be used to chose the hypothesis hi for which
the bound is minimal that is, the reduction in the number of
errors (�rst term) outweighs the increase in capacity (second
term)

This induction strategy is known as structural risk
minimisation.
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Margin-Based Bounds on Generalisation

Consider using a class F of real-valued functions on an input
space X for classi�cation by thresholding at 0.

The margin of an example (xi , yi ) ∈ X × {−1, 1} with respect

to a function f ∈ F is the quantity

γi = yi f (xi )

γi > 0 implies correct classi�cation
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Margin-Based Bounds on Generalisation

the margin mS (f ) of f is the minimum of the margin
distribution

mS > 0 if f correctly classi�es S

The margin of a training set S with respect with the class F is
the maximum margin over all f ∈ F
If we are considering linear function class we assume that the
margins are geometric (weight vector has unit norm)
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Maximal Margin Bounds

A large γ can reduce the size of the function space.

Generalisation performance can be approximated by a function
whose output is within γ/2 on the points of double sample.

A γ − cover of F with respect to a sequence of inputs
S = {x1, . . . , x`} is a �nite set of functions B such that for all
f ∈ F there exists g ∈ B such that

max
1≤i≤`

(|f (xi )− g (xi )|) < γ

N (F , S , γ) is the smallest cover

N (F , `, γ) = max
S∈X l

N (F , S , γ) are the covering numbers
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Maximal Margin Bounds

The theorem cam be reformulated using the covering numbers

D` {S : ∃f ∈ F : errS (f ) = 0, mS (f ) ≥ γ, errD (f ) > ε}

≤ 2D2`
{
SŜ : ∃f ∈ F : errS (f ) = 0, mS (f ) ≥ γ, err

Ŝ
(f ) > ε`/2

}
By a similar analysis, the right hand side of the inequality can
be bounded by

≤ 2 |B| 2−ε`/2 ≤ 2N (F , 2`, γ/2) 2−ε`/2
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Maximal Margin Bounds

The, we get the result

errD (f ) ≤ ε (`,F , δ, γ) =
2
`

(
logN (F , 2`, γ/2) + log

2
δ

)
provided ` > 2/ε

The bound on logN (F , `, γ) represents a generalisation of the
bound on the growth function required for the VC theory.

The corresponding quantity we shall use to bound the covering
numbers will be a real-valued generalisation of the VC
dimension known as the fat-shattering dimension.
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Maximal Margin Bounds (cont.)

A set of points x1, . . . , x` is γ − shattered by F if there exists
real numbers ri such that for every binary classi�cation
b ∈ {−1, 1}` there exists fb ∈ F , such that

fb (xi ) =

{
≥ ri + γ, bi = 1

< ri − γ, bi = −1

The fat-shattering dimension at scale γ is the size of the
largest γ − shattered subset of X (a.k.a. scale-sensitive VC
dimension)

Clearly, the larger the value of γ, the smaller the size of set
that can be shattered since the restrictions placed on the
functions that can be used become stricter.

Uribe, Alonso, Galeano Department of Computer Science and Engineering National University of Colombia

Regularisation and SVM



Introduction Probably Approximately Correct Learning Vapnik Chervonenkis Theory Margin-Based Bounds on Generalisation

Margin Percentile Bounds

It includes the case when a hypothesis is not fully consistent
with the training data.

errD (f ) ≤ k

`
+

√
c

`

(
R2

Ms,k(f )2
log2` + log

1
δ

)
, where k/` is the number of allowed errors, and Ms,k(f ) is the k/`
percentile of Ms(f ).

It suggest that we can obtain the best generalisation
performance by minimising the number of margin error, where
we de�ne a training point to be a γ −margin error if it has
margin less than γ.
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Soft Margin Bounds

Consider using a class F of real-valued functions on an input
space X for classi�cation by thresholding at 0. We de�ne the
margin slack variable of an example (xi , yi ) ∈ X x {−1, 1}
with respect to a function f ∈ F and target margin γ to be
the quantity

ε ((xi , yi ) , f , γ) = εi = max (0, γ − yi f (xi ))

Uribe, Alonso, Galeano Department of Computer Science and Engineering National University of Colombia

Regularisation and SVM



Introduction Probably Approximately Correct Learning Vapnik Chervonenkis Theory Margin-Based Bounds on Generalisation

Soft Margin Bounds (cont)

Consider thresholding real-valued lineal functions L with unit
weight vectors on an inner product space X and �x γ ∈ R+.
There is a constant c such that for any probability distribution
D in X x {−1, 1} with support in a ball of radious R around
the origin, with probability 1− δ over ` random examples S ,
any hypothesis f ∈ L has error no more than

errD (f ) ≤ c

`

(
R2 + ‖ε‖22

γ2
log

2e`
d

+ log
1
δ

)
where ε is the slack vector with respect to f and γ
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