> Fabio A. González Ph.D.

Overfitting and Generalization

Generalization, Overfitting and Regularization

Fabio A. González Ph.D.

Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá

March 27, 2007

Outline

Generalization, Overfitting and Regularization

Fabio A. González Ph.D.

Overfitting and Generalization

Overfitting and Generalization Generalization Overfitting

2 Regularization

Regularization Measures of complexity

> Fabio A. González Ph.D.

Overfitting and Generalization Generalization Overfitting

Regularization

Generalization

• The generalization error is defined as:

$$E[(g(x) - y)^2]$$

- In general, we don't know the exact generalization error of a model, but we can estimate it.
- Alternatives:
 - Training error
 - Test error
 - Mathematical estimation based on model complexity

> Fabio A. González Ph.D.

Overfitting and Generalizatio

Generalization Overfitting

Regularization

Training Error and Test Error

> Fabio A. González Ph.D.

Overfitting

Overfitting and Generalization Generalization Overfitting

Regularization

- A model overfits if it fits particularities of the training set (noise, bias, etc): low training error high testing error.
- A complex model has more possibilities to overfit data.
- The generalization error is a function of the model complexity.
- Occam's razor and minimum description length principle.

> Fabio A. González Ph.D.

Overfitting and Generalization Generalization Overfitting

Regularization

Dealing with Overfitting

- Break the available data in three subsets:
 - Training
 - Validation
 - Testing
- Train the model varying the complexity
- Use the validation set to estimate the generalization error
- Find the optimal complexity

> Fabio A. González Ph.D.

Overfitting and Generalization Generalization Overfitting

Regularization

Bias variance trade-off

• Error could be expressed as:

$$Error = variance + Bias^{2}$$
$$= E[(d - E[d])^{2}] + (E[d] - \theta)^{2}$$

- Bias: how much g(x) is wrong
- Variance: how much g(x) fluctuates around expected value

> Fabio A. González Ph.D.

Overfitting and Generalization

Regularization

Regularization

Measures of complexity

An alternative approach to control overfitting

- Control the complexity in the learning process
- Penalize high-complexity models:

L(g(), X) =Prediction Error $+ \lambda$ Complexity(g())

• Complexity can be measured/controlled in different ways

> Fabio A. González Ph.D.

Overfitting and Generalization

Regularization

Measures of complexity

VC Dimension

• Proposed by Vapnik and Chervonenkis:

V. Vapnik and A. Chervonenkis. "On the uniform convergence of relative frequencies of events to their probabilities." Theory of Probability and its Applications, 16(2):264–280, 1971.

- VC-dimension: Cardinality of the largest set of points that the algorithm can shatter.
- Shattering: A classification model f with some parameter vector Θ is said to shatter a set of data points
 (x₁, x₂, ..., x_n) if, for all assignments of labels to those points, there exists a Θ such that the model f makes no errors when evaluating that set of data points.

Wikipedia:http://en.wikipedia.org/wiki/VC_dimension

> Fabio A. González Ph.D.

Overfitting and Generalization

Regularization

Measures of complexity Example

> Fabio A. González Ph.D.

Overfitting and Generalization

Regularization

Measures of complexity

Rademacher complexity

 Proposed as an alternative to VC dimension: Koltchinskii, V. and Panchenko, D. (2000). Rademacher processes and bounding the risk of function learning. In High Dimensional Probability II (E. Giné, D. Mason and J. Wellner, eds.) 443–459. Birkhäuser, Boston.

Definition

For a sample $S = \{x_1, \ldots, x_l\}$ generated by a distribution \mathcal{D} on a set X and a real-valued function class \mathcal{F} with domain X, the *empirical* Rademacher complexity of \mathcal{F} is the random variable

$$\hat{R}_l(\mathcal{F}) = E_\sigma \left[\sup_{f \in \mathcal{F}} \left| \frac{2}{l} \sum_{i=1}^l \sigma_i f(\mathbf{x}_i) \right| \right| \mathbf{x}_1, \dots, \mathbf{x}_l \right],$$

where $\sigma = \{\sigma_1, \ldots, \sigma_l\}$ are independent uniform $\{\pm 1\}$ -valued (Rademacher) random variables. The *Rademacher complexity* of \mathcal{F} is

$$R_{l}(\mathcal{F}) = E_{S}[\hat{R}_{l}(\mathcal{F})] = E_{S\sigma} \left[\sup_{f \in \mathcal{F}} \left| \frac{2}{l} \sum_{i=1}^{l} \sigma_{i} f(\mathbf{x}_{i}) \right| \right].$$

> Fabio A. González Ph.D.

Overfitting and Generalization

Regularization

Regularizatio Measures of complexity Bounds on expected error

 Pattern: a function f(x) is a pattern in a set of data items generated i.i.d. according to a fixed (but unknown) distribution D if

$$E_{\mathcal{D}}[f(x)] \approx 0$$

Theorem

Fix $\delta \in (0,1)$ and let \mathcal{F} be a class of functions mapping from Z to [1, a+1]. Let $(z_i)_{i=1}^l$ be drawn independently according to a probability distribution \mathcal{D} . Then with probability at least $1-\delta$ over random draws of samples of size l, every $f \in \mathcal{F}$ satisfies

$$E_{\mathcal{D}}[f(z)] \leq \widehat{E}[f(z)] + R_{l}(\mathcal{F}) + \sqrt{\frac{\ln(2/\delta)}{2l}}$$
$$\leq \widehat{E}[f(z)] + \widehat{R}_{l}(\mathcal{F}) + 3\sqrt{\frac{\ln(2/\delta)}{2l}}$$