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Generalization

• The generalization error is defined as:

E [(g(x ) − y)2]

• In general, we don’t know the exact generalization error of
a model, but we can estimate it.

• Alternatives:

• Training error
• Test error
• Mathematical estimation based on model complexity
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Training Error and Test Error
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Overfitting

• A model overfits if it fits particularities of the training set
(noise, bias, etc): low training error - high testing error.

• A complex model has more possibilities to overfit data.

• The generalization error is a function of the model
complexity.

• Occam’s razor and minimum description length principle.
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Dealing with Overfitting

• Break the available data in three subsets:

• Training
• Validation
• Testing

• Train the model varying the complexity

• Use the validation set to estimate the generalization error

• Find the optimal complexity
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Bias variance trade-off

• Error could be expressed as:

Error = variance + Bias2

= E [(d − E [d ])2] + (E [d ] − θ)2

• Bias: how much g(x ) is wrong

• Variance: how much g(x ) fluctuates around expected value
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González
Ph.D.

Overfitting
and
Generalization

Regularization

Regularization

Measures of

complexity

An alternative approach to control

overfitting

• Control the complexity in the learning process

• Penalize high-complexity models:

L(g(),X ) = Prediction Error + λComplexity(g())

• Complexity can be measured/controlled in different ways
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VC Dimension

• Proposed by Vapnik and Chervonenkis:
V. Vapnik and A. Chervonenkis. ”On the uniform convergence of relative
frequencies of events to their probabilities.”Theory of Probability and its
Applications, 16(2):264–280, 1971.

• VC-dimension: Cardinality of the largest set of points that
the algorithm can shatter.

• Shattering: A classification model f with some parameter
vector Θ is said to shatter a set of data points
(x1, x2, . . . , xn) if, for all assignments of labels to those
points, there exists a Θ such that the model f makes no
errors when evaluating that set of data points.

Wikipedia:http://en.wikipedia.org/wiki/VC_dimension

http://en.wikipedia.org/wiki/VC_dimension
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Example
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Rademacher complexity

• Proposed as an alternative to VC dimension:
Koltchinskii, V. and Panchenko, D. (2000). Rademacher processes and
bounding the risk of function learning. In High Dimensional Probability II
(E. Giné, D. Mason and J. Wellner, eds.) 443–459. Birkhäuser, Boston.

Definition
For a sample S = {x1, . . . , xl} generated by a distribution D on a set X

and a real-valued function class F with domain X , the empirical

Rademacher complexity of F is the random variable

R̂l (F) = Eσ
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where σ = {σ1, . . . , σl} are independent uniform {±1}-valued
(Rademacher) random variables. The Rademacher complexity of F is

Rl (F) = ES [R̂l (F)] = ESσ
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Bounds on expected error

• Pattern: a function f (x ) is a pattern in a set of data
items generated i.i.d. according to a fixed (but unknown)
distribution D if

ED[f (x )] ≈ 0

Theorem
Fix δ ∈ (0, 1) and let F be a class of functions mapping from Z

to [1, a +1]. Let (zi)
l
i=1

be drawn independently according to a

probability distribution D. Then with probability at least 1 − δ
over random draws of samples of size l , every f ∈ F satisfies

ED[f (z )] ≤ Ê [f (z )] + Rl (F) +

√
ln(2/δ)

2l

≤ Ê [f (z )] + R̂l (F) + 3

√
ln(2/δ)

2l
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