
Class Notes

Introduction to Kernel Methods

Miguel D. Dussán

The kernel methods were developed 30 years ago in Rusia by Vapnick, but
his work was note in the west only in 90’s, and applied for solving classification
problems. In the 80’s main machine learning’s technique was Neural Networks,
but it will be noted that this approach is not suitable for all kind of problems.

1. Problems

Separate two classes with a linear function, when it is not clear linear
boundary, i.e., an elipsis.

Symbolic regression, wich has its practical applications, i.e., DNA sequen-
ces, where < might be a physical or chemical property. That specific pro-
blem might be solved using a neural network but, for each letter in the
alphabet, it would be required an input. So, for a real problem, its inputs
would be millions (an unfeasible approach).

2. Kernel Method Overview

Suppose that we have the problem of finding a homogeneous real-valued
linear function that interpolates a collection of points S = {(x1, y1), . . . , (xl, yl)}
where xi belongs to X ⊆ <n, its pair yi is a label, Y ⊆ <, and x=(x1, x2, . . . , xn)
is the n-dimensional input vectors. An approach would be:

g(x) = 〈w, x〉 = w′x =
n∑

i=1

wixi

where w’ denotes the transpose of vector w ∈ <n. That new pattern function
(that relates g of the featuring x with the labels y) should be approximately
equal to zero, that is:

f((x, y)) = |y − g(x)| = |y − 〈w, x〉 | ≈ 0

which is known as linear interpolation. When there are n = l linearly indepen-
dent points, the problem might be solved through the system of linear equations

Xw = y

where X is the matrix whose rows are x′
1, . . . , x

′
l and y is the vector (y1, . . . , yl)′.

But, when n 6= l, a different approach is employed because there are more than
one w that fullfill the requirements.

1

Figura 1: Graphic representation of one dimension linear regression problem. xi

coordinate represents the input vector, and yi its labels.

If our case is the second one (n 6= l), the criterion used to choose the best w
is to pick up the one with the minimum norm. But sometimes there is noise in
the process of generate the samples, so there is required also an approximation
criterion. The conclusion here is to use a mixed method that integrates both
strategies: to find a w that has small error and small norm. The putative patter
function

f((x, y)) = |y − g(x)| = |ξ|
generates all the ξ for each one of the training examples, that is, ξ = (y− g(x)).

How to find out the minimum training errors? Here is introduced something
called a loss function, that is, L(f, S) is the collective loss of a function f on a
training set S:

L(g, S) = L(w, S) =
l∑

i=1

(yi − g(xi))2 =
l∑

i=1

ξ2i =
l∑

i=1

L(g, (xi, yi))

where L(g, (xi, yi)) = ξ2i is the squared error or loss of g on example (xi, yi).
In figure 1 is graphically represented some definitions mentioned earlier.

2.1. Learning schemes

Classical Learning scheme:

Data → Learning Algorithm → Model

Kernel Method Learning scheme:

Data → Kernel Function → Kernel Matrix → Learning Algorithm →
Model

Added an additional step between data and learning: kernel function and kernel
matrix.

2

Figura 2: Graphic representation of problem (left) and feature (right) spaces.

3. Problem and Feature space

In kernel methods, there are two spaces: the problem space, where the
samples originally belongs to, and the feature space, that is, the space where
the points are transformed using a kernel function.

In figure 2, the problem and feature spaces are shown. Note that a transfor-
mation φ is required to go from the first to the second one, and all its points
are reflected in function of φ. Also, see that a non-linear classification boundary
in the problem space becomes a linear one in the feature space.

3.1. Change of space

An example:
f : <3 → <6

(x, y, z) → (x2, y2, z2, xy, xz, yz)

In general, for changing from one to another space: <n → <
n(n+1)

2 =(n+1
2)

3.2. Dot product

In Kernel methods, the dot product is calculated in the problem space, and
then brought to the feature space. Usually, the dot product is understood as:

〈(x1, x2, . . .), (y1, y2, . . .)〉 =
∑

i

xiyi

What if we have a problem with a hundred dimensions?:

〈φ(x1, . . . , x100), φ(y1, . . . , y100)〉 = 〈(x1, . . . , x100), (y1, . . . , y100)〉2

The multiplications needed for this operations rounds about a hundred, too. So,
here is where the kernel function help us with the task of calculating the dot
product in a kernel space k : X × X → < such that k(x, z) = 〈φ(x), φ(y)〉, is
called a kernel.

3

As an example, suppose that we wish to build a kernel function that maps:

φ : x = (x1, x2)→ φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ F = <2

So, we have something from X ⊆ <2 to <3. How can we get a kernel, and benefit
from the kernel trick without explicitly evaluate its coordinates in the feature
space (that is, in <3)? Let’s calculate 〈φ(x), φ(z)〉:

〈φ(x), φ(z)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2 = (x1z1 + x2z2)2 = 〈x, z〉2

= k(x, z) = 〈x, z〉2

That is, if we have two vectors in the problem space, to calculate its φ is
only required to execute its dot product and elevate the result of the power of
two.

4

