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Parametric estimation methods assume that a sample is drawn from some known

distribution, that is, χt ∼ p (x) where p (x) can be any distribution, for example

Gaussian.

Parametric estimation assume a form for p (x | θ) and estimate θ using χ. When

you have estimated the distribution parameters from the given sample, the whole

distribution is known.

Maximum Likelihood Estimation

Maximum likelihood is the most commonly used method for parametric estima-

tion.

Let us say we have an independent an identically distributed sample χ = {xt}N
t=1.

We assume xt are drawn from some known probability density whit parameters

θ.

xt ∼ p (x | θ)
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We want to �nd θ that makes sampling xt from p (x | θ) as likely as possible.

Given the Independence of the points the likelihood of sample χ is the product

of the likelihoods of the individual points.

l (θ) ≡ p (χ | θ) =
N∏

t=1

p (xt | θ)

In order to �nd θ the most likely to be drawn, we search for θ that maximizes

the likelihood of the sample, denoted by l (θ | χ).

It is commonly used the log of the likelihood as a trick to simplify computations

without changing the value where likelihood takes its maximum.

L (θ | χ) ≡ log l (θ | χ) =
N∑

t=1

log p (xt | θ)

Then, the estimated θ is expressed as

θ∗ = arg maxθ L (θ | χ)

Bernoulli Density

In a Bernoulli distribution an event occurs or it does not. The event occurs with

probability p, and the nonoccurence of the event has probability 1− p.

P (x) = px (1− p)1−x , x ε {0, 1}

p is the only parameter, so we want to calculate its estimator, p̂. The log

likelihood is

L (θ | χ) = log
N∏

t=1

pxt
(1− p)(1−xt) =

∑
t

xt log p +

(
N −

∑
t

xt

)
log (1− p)

Maximum Likelihood Estimator (MLE) is found by solving ∂L/dp

p̂ =
P

t xt

N
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Multinomial Density

Multinomial is the generalization of Bernoulli where instead of two states, the

outcome of a random m event is one of K mutually exclusive states.

p (x1, x2, . . . , xk) =
K∏

i=1

pxi
i , where xiis the indicator variable of occurring state i

If we do N such independent experiments the MLE of pi is

p̂i =
P

t xt
i

N

That is, the estimate for the probability of state i is the ratio of experiments

with outcome of state i to the total number of experiments.

Gaussian (Normal) Distribution

Given a sample χ = {xt}N
t=1 which Gaussian (normal) distributed with mean µ

and variance σ2 denoted by ℵ (µ, σ2), its density function is

p (x) = 1√
2πσ

exp
[
− (x−µ)2

2σ2

]
,−∞ < x < ∞

The log likelihood of a Gaussian sample is

L (θ | χ) = −N
2

log (2π)−N log σ −
P

t(xt−µ)
2

2σ2

The MLE are

µ̂ =
P

t xt

N

σ̂2 =
P

t(xt−µ̂)
2

N
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The Bayes's Estimator

Sometimes, before looking at a sample, we may have some prior information

on the possible value range for a parameter θ. This prior information is quite

useful, especially when the sample is small. The prior information does not tell

us exactly what the parameter values is, so we model this uncertainty by viewing

θ as a random variable and by de�ning a prior density, p (θ).

The prior density, p (x), tell us the likely values for θ before looking at the sample.

Using Bayes's rule, after looking the sample we get the posterior density of θ by

combining the prior density with the sample.

p (θ | χ) = p(χ|θ)p(θ)
p(χ)

= p(χ|θ)p(θ)�
p(χ|θ′)p(θ′)dθ′

For estimating the density at x, we have

p (x | χ) =

�
p (x, θ | χ) dθ

=

�
p (x | θ, χ) p (θ | χ) dθ

=

�
p (x | θ) p (θ | χ) dθ

p (x | θ, χ) = p (x | θ) because knowing θ we know everything about the distri-

bution. If we are doing a prediction in the form, y = g (x | θ), as in regression,

then we have.

y =
�

g (x | θ) p (θ | χ) dθ

Some times the posterior does not have a nice form and integration could not

be feasible, then, using the maximum a posteriori (MAP) estimate will make the

calculation easier, assuming that p (θ | χ) has a narrow peak around this mode:
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θMAP = arg max
θ

p (χ | θ)

Then, we get ride of the integral using

p (x | χ) = p (x | θMAP )

yMAP = g (x | θMAP )

If we have no prior reason to favor some values of θ, then the posterior will

have the same form as the likelihood, p (χ | θ), and the MAP estimate will be

equivalent to the maximum likelihood estimate.

θML = arg max
θ

p (χ | θ)

Another possibility is the Bayes's estimator, de�ned as the expected value of the

posterior density.

θBayes = E [θ | χ] =
�

θp (θ | χ) dθ

Suppose xt ∼ ℵ (θ, σ2
0) and θ ∼ ℵ (θ, σ) where µ, σ, σ2

0 are known

p (χ | θ) = 1

(2π)
N/2

exp

[
−

P
t(xt−θ)

2

2σ2
0

]
p (θ) = 1√

2πσ
exp

[
− (θ−µ)2

2σ2

]
It can be shown that p (θ | χ) is normal with

E [θ | χ] =
N/σ2

0
N/σ2

0+1/σ2 m +
1/σ2

N/σ2
0+1/σ2 µ
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