
Introduction to Machine Learning

Isabelle Guyon

Notes written by: Johann Leithon.

Introduction

The process of Machine Learning consist of having a big training data base,
which is the input to some learning algorithm and comes out in a learning
machine, then in the utilization phase you can input real data to the trained
machine for having an answer. This is a very general framework (see �gure 1):

Figure 1: Machine Learning Framework

Machine Learning is useful to solve a large number of problems related to:
classi�cation (when you need to predict the outcome of a variable which is
binary or categorical), Time Series Prediction (continous outcomes to predict),
Regression (continous outcomes to predict) and Clustering (�nd groups in data).

Learning machines include: Linear Methods, Kernel Methods, Neural Net-
works and Decision Trees. These are the most used but there are people working
in new ones.

Applications can be map alog two axis, the x axis is the number of inputs
that you have and the y axis is the number of training examples that you have
(see �gure 2). In this two dimensional space you can have, map the complexity
of problems, the few the number of training examples, the harder it is going to
be to generate a learning machine, this is getting worst as the number of inputs
increases compared to the number of training examples.

1

Figure 2: Application Map

Sometimes problems become complex because you have to much data, it is
now a problem of computational complexity and not a problem of evaluating
the parameters of the learning machine. For example: having a lot of example
and a lot of inputs means a huge compute power.

Typical applications of Machine Learning include: Banking, Telecom and
Retail, you are interested about identifying prospective costumers, dissatis�ed
costumers, good costumers, bad payers, in order to obtain: more e�ective ad-
vertising, less credit risk, fewer fraud and decrease the churn rate (churn means
for an employee to switch to one company to another). Biomedical, Biometrics
areas, you need to screen people for risk of certain desease, to make a diag-
nosis or to predict the outcome of a treatment (prognosis), you are interested
also about discovering new drugs. Security Area: Machine Learning is needed
for face recognition, iris veri�cation, �ngerprinting, signature, and also DNA
�ngerprinting. In computation and Internet, people have been using Machine
Learning for designing computer interfaces (troubleshooting wizards, handwrit-
ing and speech recognition interfaces, and brain waves - for handing computer
machines through your brain). Internet applications include: hit ranking, spam
�ltering, text categorization, text translation and recommendation.

Guyon describes challenges for NIPS 2003 and WCCI 2006 which consist of
perfoming some experiments (classi�cation tasks) with ten datasets correspond-
ing to di�erent areas for having a wide spectrum of di�culty in terms of inputs
and the number of training examples. Results showed how di�erent learning
machines perform in di�erent datasets (see �gure 3)

2

Figure 3: Challenge Winning Methods

Figure (3) groups learning machines into four categories: Linear and Kernel
methods, Neural Nets, Decision Trees and Näive Bayes. As it can be seen, in
terms of relative Balance Error Rate which is the Balance Error Rate over the
average Balance Error Rate of the participants, the best performers were doing
very well, the Linear and Kernel methods for the �rst two datasets but not
better than other methods for the last four datasets. Neural networks can do
very well in some datasets but they have problems in others. Decision trees
perform almost the same as Neural Networks, very well in some datasets but
not al all. Näive Bayes, which is a very simple method making independents
assumptions about the inputs can do well in some datasets but generally, they
performed worst. One of the tasks in ML is to predict, to have on time which
learning machines is going to perform well before you have seen data.

Convention

Data are going to be represented as a matrix, the lines represent examples and
the columns represent feautures or variables. For example, it could be patients
(in lines) and for each patient you will have recorded the age, the weight, the
number of children, etc.

In terms of learning machines, the weights which are associated with the
columns, are used to construct the decision function. When those weights are
associated with the lines, we called them the alphas. There is a special column
separated from the others, which is the target, quantity that you want to predict
(see �gure 4)

3

Figure 4: Conventions

Unsupervised Learning Problems

You are dealing with �nding a structure in data. If you want to see any struc-
tures in data you have to perform clustering, then randomize data and �nally
clustering again in order to realize a structure.

Supervised Learning Problems

We want to predict an extra column y. This class is about supervised learning
and building functions of x, x, being the inputs that allow us to make predictions
about the target y, so f(x) should be as close as posible to the y that we want
to predict.

Linear Models

The simplest way to build f(x) is to make a dot product between x, which is
a vector (one line of your matrix, for example), and the weight vector w. This
is equivalent to making a weighted sum of the input features weighted by some
coe�cients, to build the output.The decision is going to be built as some kind
of voting, the weights are the voting power of each input feature, see equation
(1):

f(x) = w · x+ b =
∑

j=1:n

wjxj + b (1)

When the inputs and the parameters of the function are not linear, you
obtain a family of functions which is called Perceptron, see equation (2).

f(x) = w · φ(x) + b =
∑

j=1:n

wjφj(x) + b (2)

4

φ(x)is a transform of the input in a feature space. φ(x) are features in a
transformed space, for example the product of two features. Suppose it is easier
to have the product of the age and weight, you have another feature which can
be φ(x). You can have many much complex operations (pieces of images, lines,
feature extractions).

In the same familiar methods, there are kernel methods, in this case you
replace the weights w by alphas because now instead of weighting the features
of the matrix (columns), you are weighting the lines of the matrix. Replace the
φ(x) with some kind of basic functions. The di�erence is that we are using the
training examples and copying the training examples with the new examples,
that is under study, K is a similarity measure between the training example and
the new unknown example. There is also a weighted sum but the features are
of special kind, the features are similarities with the original example.

Arti�cial Neurons

In the 80's, people were trying to imitate the brain (the way people understand
how the brain functions) to get better predictions (by the machine). The basic
processing unit of the brain is the neuron, it has been model coarsy by 1943, this
is the model most used in ML, even though there have been a lot of re�nments.
This is also a linear model, the only di�erence is that you have a so called
activation function at the output so the unit makes a weighted sum of the inputs
and then this wighted sum goes to what the people call activation function, so
the output is bounded by two values (for example, for making a decision). See
�gure ().

Figure 5: Neural Network

Linear Decision Boundary

Consist of making a decision in order to separate two classes using a linear
decision boundary. 2 Classes, 2D it is a line, in 3D it is a plane, in general for
higher dimensions it is a hyperplane which dimension is the dimension of the
features minus one, see �gure (6).

5

Figure 6: Linear Decision Boundary

Perceptron

The second simplest learning machine you can imagine. It was invented by
Rosenblatt in 1977. You replace the inputs by the transformed inputs, the φ(x)
, which is a function computed eventually from the other original inputs, you
obtain a new vector of dimension N, when the original number of features was
smaller. f(x) is going to be a continous value to predict your outcome See �gure
(7). The advantage of Perceptron is that it has a non linear decision boundary
and lets you to separate classes which are not easy separated using a simple
linear decision boundary. See �gure ()

Figure 7: The Perceptron

6

Figure 8: Non Linear Decision Boundary, 2D, 3D.

Kernel Methods

Special case of linear methods, they are similar to perceptron except that φ(x)
functions are replaced by k(xi, x) functions. Graphically, all the inputs of (new
patient), are being compared with the inputs your training examples, x1 repre-
sent the vector of the features of the �rst patient, in the simplest case we compute
the dot product between vector x (unknown patient) with x1(representing the
patient 1). This method is similar to the Nearest Neighbor Method. See �gure
().

Figure 9: Kernel Method

Hebb's Rule

If there is activity between one neuron and the next one, this reinforce the
synapse, while if there is not activity between two consecutive neurons, this

7

decrease the synapse, see equation (3).

wj ← wj + yixij (3)

If one uses ±1outputs, the term yixij in (3) will be positive only if input
and output are both positive or negative.

Kernel �Trick�

Hebb's rule is useful to understand the Kernel �Trick�. This is a basis for a
lot of kernel methods algorithms. It establishes that there is a correspondece
between the perceptron representation and the kernel based representation. A
perceptron and a kernel can represent the same decision function. First, consider
the Hebb's rule applied to the perceptron, the weight vector is going to be a
weighted sum of the yiφ(xi):

w =
∑

i

yiφ(xi)

f(x) = w · φ(x) =
∑

i

yiφ(xi) · φ(x)

For the kernel based expression, de�ne the product:

k(xi, x) = φ(xi) · φ(x)

We �nally �nd an equivalent expression for the kernel based method:

f(x) =
∑

i

yik(xi, x)

In general expressions:

f(x) =
∑

i

αik(xi, x)

k(xi, x) = φ(xi) · φ(x)

Which has a dual form in a Perceptron based representation:

f(x) = w · φ(x)

w =
∑

i

αiφ(xi)

Clearly, it can be shown through simple algebra.

8

What is a Kernel?

A kernel is a similarity measure, it is a dot product in some feature space and
sometimes we don't know what the space is. Examples:

k(s, t) = e−
||s−t||2

σ2

k(s, t) = (s · t)q

The �rst example is called the Gaussian Kernel and just computes the eu-
clidean distance between two vectors. The second example is called the Poly-
nomial Kernel and allows you to perform a polinomial function.

Multi-Layer Perceptron

You combine many neurons and stack them in a structure where one layer of
neurons is the input to another layer, see �gure (10). Originally, this was design
to solve the so called chessboard problem which establishes that when there is
two classes to be arranged in a chessboard, you can not classi�ed them using
a linear decision boundary, but if you have two, then you can make a perfect
separation, which is related to stack several layers to produce several decision
boundaries, see �gure ().

Figure 10: Multi-Layer Perceptron

9

Figure 11: Chessboard Problem

Tree Classi�ers

They are going to try progresively to separate examples along axes of the feature
space, one feature of one input and in the other side the other. Objective: to
separate two classes, they could be related to two populations. You will still have
quiet bit of error. �At each step, choose the feature that �reduces entropy�most.
Work towards �node purity�.� See �gure (12).

Figure 12: Decision Trees

Fit/Robustness Tradeo�

If you have a complex decision boundary, new data probably will not �t as
training examples, while, if your decision boundary is simple, the probability
of new data to �t correctly is bigger. Figure () shows how new data �t better

10

when a simple line is used as a decision boundary in comparison with new data
in a complex decision boundary.

Figure 13: Fitting and Decision Boundaries

Performance Evaluation

We can put more weight on the error of one class than in the other. For example,
false negatives are more serious than false positives when regarding to diseases.
This discrimination can be perfoming simple by sliding the decision boundary
toward the side which represents worst error in choosing it, the idea is to reduce
its area in order to reduce higher weighted errors in classi�cation. Otherwise
one may shift the decision boundary in the other direction, it depends on the
class which represent the higher weighted errors in choosing, see �gure (14).

In general, you can vary the bias value and monitor the tradeo� between the
error making in the positive class and the error making in the negative class,
this is the so called ROC curve.

Figure 14: Bias Displacement

11

ROC Curve

The ROC curve plots the positive class success rate (also called the hit rate or
sensitivity) versus the one minus the negative class success rate (also called false
alarm rate, or one minus the speci�city). For a given threshold on f(x), you get
a point on the ROC curve, see �gure (15).

Figure 15: ROC Curve

The area under that curve is the better from a point of view of the classi�-
cation accuracy, this is one way people meassure classi�cation accuracy which
also has to be independent on the particular choice of the bias that you make.
The idea of ROC curve is this one: it has an area of one it's making more
error on the negative class and you move the bias towards the positive class.
The random case (when you're making decision at random for the positive and
negative classes) gives an area under the curve of 0.5.

Sometimes people meassure using the Lift Curve. The Lift Curve plots the
fraction of good customers versus the fraction of customers selected, see �gure
(16).

If you have two classes and making prediction, then you'll have several types
of errors: the false positives (when you classify an item as positive and this is
actually negative) and the false negatives (when you classify an item as negative
being positive). Then you have the correct classi�cation the true negative and
true positive. True negative plus false positive is the total number of negative
examples, and the sum of the false negative and the true positive is the total
number of positive examples. Then you have the rejected examples which are
the total number of negative examples classi�ed (true negative plus false neg-
ative). You also have the selected examples, the ones that you have classi�ed
as positive (false and true). Using these quantities you can compute virtually
all the measurements that people used to assess performance of classi�ers, see
�gure (17).

12

Figure 16: Lift Curve

Figure 17: Performance Assessment

13

Risk Function

Risk function is a function of the parameters of the learning machine assessing
how much it is expected to fail in a given tasks. For examples: for classi�cation
problems, the error rate (or 1 minus the area under the ROC curve) is going to
be a function of risk. For regression, people use most the mean square error,
see equation (4). In this case you are taking the output of the learning machine
and the desired output making the di�erence square and averaging it.

1
m

∑
i=1:m

(f(xi)− yi)
2

(4)

Training

A risk function is needed for training. When you are training you have to
de�ne how are you going to measure and how your learning machine is going to
perform, then you want to optimize it. You want to minimize the risk function
and that can be done with a variety of methods including gradient descent,
mathematical programming, simulated annealing, genetic algorithms etc.

Summary

With linear threshold units (�neurons�) we can build many di�erent kinds of
Learning Machines including:

• Linear discriminant (including Naïve Bayes -the special case-)

• Kernel methods (which are linear in the parameters, not necessarily in the
input components)

• Neural networks which are nonlinear both in the parameteres and the
input components.

• Decision trees that have also elementary nodes that make a simple linear
decision.

The architectural of the learning machines, also called hyper-parameters may
include:

• The choice of basis functions φ (features), which φ function you are using
in the perceptron or which kernel you're using in the kernel.

• The kernel

• The number of units in the case of a neural network.

Learning means �tting the parameters that are the weights and also the hyper
parameters. One has to be aware of the �t vs.robustness tradeo�, it is not
necessary best to obtain a decision boundary that learns exactly well the training

14

example but what one needs to care about is how well it is going to be well on the
feature examples that we haven't seen in the training data. In that respect, using
a linear decision boundary sometimes is better that using a complex decision
boundary.

All �gures from [1].

15

Bibliography

[1] Guyon, Isabelle, Introduction to Machine Learning, Slides and Videolecture.
Available at: videolectures.net.

16

