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Content-Based Image Retrieval
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Query by Visual Example
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Low-level vs. High-level
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Semantic Annotation using ML

Ranked Retrieval

L

Posterior
probability
Query Image Weight Vector

Source: Nuno Vasconcelos, UCSD, http://www.svcl.ucsd.edu/projects/qbse/
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An Example (1)
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An Example (2)

Recall vs Precision Graph - Semantic models
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Disadvantages

@ Requires a training set with expert annotations, so it is a costly
process
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Disadvantages

@ Requires a training set with expert annotations, so it is a costly
process

@ Does not scale for large semantic vocabularies

@ The mapping from visual features to annotations may lose the visual
richness
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Multimodality
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Text and images come naturally together in many documents

@ Academic papers, books
@ Newspapers, web pages
@ Medical cases
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Multimodal Retrieval

@ Unstructured text associated to images may be used as semantic
annotations

o Images and texts are complimentary information units
o Take advantage of interactions between both data modalities
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Multimodal Retrieval

@ Unstructured text associated to images may be used as semantic
annotations

o Images and texts are complimentary information units
o Take advantage of interactions between both data modalities

@ Problems:

o Text associated to images is not structured
e Unclear relationships between keywords and visual patterns
o Possible presence of noise in both data modalities

@ Retrieval scenarios:

o Cross-modal:

o find images based on a text query
o find text based on an image query (image annotation)

o Visual retrieval based on a visual query
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© Non-Negative Matrix Factorization
@ The Netflix Prize
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The Netflix Competition

@ Problem: prediction of user
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Serious

filtering) \A_',
The Color Purple madeus

Lethal Weapon

Sense and

- B
. toward

females 8}, = males

fi

Dave

Independence|
s Daj

Escapist

Gus

Dnmher

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp.
30-37, August 2009
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The Latent-Factor Model

movies factors movies
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© Non-Negative Matrix Factorization

@ Non-negative matrix factorization
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Non-negative Matrix Factorization

Problem: to find a factorization

Xoxm = WasrHrxm
@ Optimization problem:

minA7B ||X— WHH2

s.t. W,H>0
@ || - || is the Frobenius norm
@ It is a non-convex optimization problem
@ Solution alternatives:

o Gradient descendent methods
o Multiplicative updating rules
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Multiplicative Rules

@ Optimization problem:

minag ||[X — WH|?
s.t. W,H>0

@ Incremental optimization:
(WTX)ay

o = o (W), .

(XHT)ay.

Wiz — Wiaro e —
(WHHT) oy,
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Divergence Optimization

@ Optimization problem:

. XI”
minas  D(X|WH) = X2 (Xylog sy — Xy + (WH);)
st W,H>0

@ Multiplicative Rules:
WiaXiu/(WH)iu
2. Wi

22 HauXip/ (WH) iy
Zu Ha,u

Hau - HaMZi

Wiy — Wi,
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© Non-Negative Matrix Factorization

@ NMF vs SVD
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PCA and SVD

Qriginal
@ Problem: NME o

Xn><m = Wn><rHr><m

Principal Component Analysis
(PCA)

X=UxV

W=Us2,H=%3V

PCA = SVD keeping the 'best’
Eigenvectors

Columns of U are orthonormal

There is not restriction on sign.

D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp.
788-791, October 1999
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Latent Semantic Indexing (LSI)

documents factors documents
X11 e X1m w11 e W1 r h11 e hlm
(%3]
%) w0 =
£ £ 3
ey = O
it = 3 x 8
Xpl ... Xnm Wpi ... Wy hyy ... hm
X w H
@ Documents are represented by the frequency of keywords (terms)
@ Uses SVD to find the factorization
@ Factors = semantic concepts
@ Columns of W are orthonormal
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NMF vs LSI
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W. Xu, X. Liu, and Y. Gong, "Document clustering based on non-negative matrix factorization,” in SIGIR '03: Proceedings of
the 26th annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY,

USA: ACM, 2003, pp. 267-273
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© NMF for Multimodal Retrieval
@ Semantic space
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Semantic Space: Multimodal Latent Indexing (1)

@ Objects are described by terms in a textual vocabulary and a visual
vocabulary

F. Gonzalez (UNAL) NMF for MM IR CECS Grad Sem 30/ 49



Semantic Space: Multimodal Latent Indexing (1)

@ Objects are described by terms in a textual vocabulary and a visual
vocabulary

@ Objects are mapped to a latent (semantic) space where objects are
represented by a set of latent factors

F. Gonzalez (UNAL) NMF for MM IR CECS Grad Sem 30/ 49



Semantic Space: Multimodal Latent Indexing (1)

@ Objects are described by terms in a textual vocabulary and a visual
vocabulary

@ Objects are mapped to a latent (semantic) space where objects are
represented by a set of latent factors

@ NMF is used to build the latent representation

F. Gonzalez (UNAL) NMF for MM IR CECS Grad Sem 30/ 49



Semantic Space: Multimodal Latent Indexing (1)

@ Objects are described by terms in a textual vocabulary and a visual
vocabulary

@ Objects are mapped to a latent (semantic) space where objects are
represented by a set of latent factors

@ NMF is used to build the latent representation
@ Three main tasks:

e Multimodal clustering
e Automatic image annotation
o Image retrieval
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Semantic Space: Multimodal Latent Indexing (I1)

text terms

Latent Space

Document Space
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Bag-of-Features Image Representation

Histopathelogical images (i) Feature detection and description

PLOERLD eao WLOEALD eaa T PLOEALD e -
Codebook

(iii) Bag of features representation

UNA
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© NMF for Multimodal Retrieval

@ Multimodal clustering
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Multimodal Clustering

text terms

Document Space Latent Space
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Dual Multimodal Clustering

g
2
3

Document Space Latent Space Term Space
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Does It Work?

o Clustering Corel data set: 1000 images, 25 categories
@ Input matrix: 2500 vectors of dimension 1000

@ Clustering performance comparison: K-means and two NMF variants:

’ ‘ K-means ‘ NMF (Frobenius norm) ‘ NMF (KL divergence) ‘
| Accuracy | 0.2288 | 0.2768 \ 0.2905 |

*results are average of 10 runs
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© NMF for Multimodal Retrieval

@ Image annotation
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Image Annotation

1. Apply NMF to training data

2. Find latent representation h of a visual
vectorx, x=W1*h

3. Multiply h by W to get the multimodal
vector [x,y]
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Does it Work?

@ pLSA has shown good performance for image annotation

TABLE 3
mAP Values (in Percent) for the Six Methods
When Combinations of HS and SIFT Features Are Used

Blobs HS SIFT | HS+SIFT
propagation 78 (0.7) | 9.0(02) | 94 (1.0) | 13.1 (0.5)
CMRM [15] 115 (1.1 | 107 (1.1) | 7.9 (0.5) | 13.4 (1.0)
SVD-cos [26] 129 (1.1) | 12.9 (0.8) | 10.7 (0.7) | 16.6 (1.1)
PLSA-MIXED 58 (0.8) | 102 (0.8) | 7.5(0.6) | 11.9 (1.3)
PLSA-FEATURES || 82 (0.7) | 11.2 (1.0) | 10.1 (0.8) | 14.0 (1.3)
PLSA-WORDS 11.0 (0.9) | 133 (1.0) | 11.8 (1.1) | 19.1 (1.2)

o NMF with KL divergence was shown to be equivalent to pLSA
W. Xu, X. Liu, and Y. Gong, "Document clustering based on non-negative matrix factorization,” in SIGIR '03: Proceedings of
the 26th annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY,

USA: ACM, 2003, pp. 267-273
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© NMF for Multimodal Retrieval

@ Multimodal retrieval
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Image Retrieval

@ Scenario: visual retrieval based on a visual query
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Image Retrieval

Scenario: visual retrieval based on a visual query
Images are represented in a latent space using NMF

Some images in the database may not have text content associated

The image query is projected the latent space
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Image Retrieval

Scenario: visual retrieval based on a visual query
Images are represented in a latent space using NMF
Some images in the database may not have text content associated

The image query is projected the latent space

Image are retrieved according to their latent space similarity
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Experimental Evaluation
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Corel Images
@ A subset of 2,500 images extracted from the Corel Database.

@ 25 categories with 100 images each.
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Bag of Features

e @ I
(™

Corel Images

@ Image content representation using parts of images

@ Blocks are extracted from each image and the SIFT descriptor is
computed

@ A dictionary of visual patterns is built using k-means

@ A histogram counting the occurrence of each codeblock is constructed
for each image

v
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Search Performance

03 == NMF-based Search
== \fisual Search
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Dimensions

This approach outperforms direct image matching by almost 4X
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Some specific performance measures
Measure | NMF Search P1  Direct Search
P1 0.4400 0.5280
P20 0.4508 0.3820
P50 0.4474 0.3160
R10 0.0471 0.0446
R20 0.0949 0.0804
R50 0.2355 0.1663
MAP 0.4825 0.1342
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Semantic Space Visualization (1)
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Semantic Space Visualization (I1)
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Ongoing Work

Bigger data sets: ImageClefMed, Corel5000, Flickr
Different image low-level features
Kernel NMF

Incremental NMF
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