Non-negative Matrix Factorization for Multimodal Image Retrieval

Fabio A. González PhD

Machine Learning 2015-II Universidad Nacional de Colombia

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

The Problem

Content-based image retrieval

- Semantic image retrieval
- Multimodal image retrieval

- The Netflix Prize
- Non-negative matrix factorization
- NME vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

< □ > < 同 > < 回 > < 回 > < 回 >

Low-level vs. High-level

F. González

NMF for MM IR

▲ ■ ▶ ■ ∽ ९
ML 2015-II 7 / 54

The Problem

• Content-based image retrieval

• Semantic image retrieval

• Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Semantic Annotation using ML

Source: Nuno Vasconcelos, UCSD, http://www.svcl.ucsd.edu/projects/qbse/

< □ > < 同 > < 回 > < 回 > < 回 >

An Example (1)

イロト イポト イヨト イヨト

Recall vs Precision Graph - Semantic models

Requires a training set with expert annotations, so it is a costly process

- Requires a training set with expert annotations, so it is a costly process
- Does not scale for large semantic vocabularies

- Requires a training set with expert annotations, so it is a costly process
- Does not scale for large semantic vocabularies
- The mapping from visual features to annotations may lose the visual richness

Scalability

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Multimodality

Text and images come naturally together in many documents

- Academic papers, books
- Newspapers, web pages
- Medical cases

F. González

Multimodal Retrieval

- Unstructured text associated to images may be used as semantic annotations
 - Images and texts are complimentary information units
 - Take advantage of interactions between both data modalities

Multimodal Retrieval

- Unstructured text associated to images may be used as semantic annotations
 - Images and texts are complimentary information units
 - Take advantage of interactions between both data modalities
- Problems:
 - Text associated to images is not structured
 - Unclear relationships between keywords and visual patterns
 - · Possible presence of noise in both data modalities

Multimodal Retrieval

- Unstructured text associated to images may be used as semantic annotations
 - Images and texts are complimentary information units
 - Take advantage of interactions between both data modalities
- Problems:
 - Text associated to images is not structured
 - Unclear relationships between keywords and visual patterns
 - · Possible presence of noise in both data modalities
- Retrieval scenarios:
 - Cross-modal:
 - find images based on a text query
 - find text based on an image query (image annotation)
 - Visual retrieval based on a visual query

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

 Problem: prediction of user ratings for films (collaborative filtering)

Image: Image:

Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, August 2009

-

- Problem: prediction of user ratings for films (collaborative filtering)
- Prize: \$1 Million to the first algorithm able to improve Netflix own algorithm results by at least 10%

Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, August 2009

< ∃ > <

- Problem: prediction of user ratings for films (collaborative filtering)
- Prize: \$1 Million to the first algorithm able to improve Netflix own algorithm results by at least 10%
- Won on Sept/21/2009 by BellKor's Pragmatic Chaos

Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, August 2009

< ∃ > <

- Problem: prediction of user ratings for films (collaborative filtering)
- Prize: \$1 Million to the first algorithm able to improve Netflix own algorithm results by at least 10%
- Won on Sept/21/2009 by BellKor's Pragmatic Chaos
- Their approach used Matrix Factorization to build a latent-factor representation of

users and movies Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, August 2009

NMF for MM IR

ML 2015-II 19 / 54

★ ∃ ▶

The Latent-Factor Model

 $R \approx QP$ $Q, P \ge 0$

$$n \approx 5 \times 10^{5}$$
$$m \approx 1.7 \times 10^{4}$$
$$|\{(i,j)|r_{ij} \neq 0\}| \approx 10^{8}$$
$$f \leq 200$$

F. González

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD
- 3 NMF for Multimodal Learning
 - Semantic space
 - Multimodal clustering
 - Image annotation
 - Multimodal retrieval
 - Application to histology images

• Problem: to find a factorization

$$X_{n\times m} = W_{n\times r}H_{r\times m}$$

• Optimization problem:

$$\begin{array}{ll} \min_{A,B} & ||X - WH||^2\\ \text{s.t.} & W, H \ge 0 \end{array}$$

- $|| \cdot ||$ is the Frobenius norm
- It is a non-convex optimization problem
- Solution alternatives:
 - Gradient descendent methods
 - Multiplicative updating rules

Multiplicative Rules

• Optimization problem:

$$\begin{array}{ll} \min_{W,H} & ||X - WH||^2\\ \text{s.t.} & W, H \ge 0 \end{array}$$

• Incremental optimization:

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^{T}X)_{a\mu}}{(W^{T}WH)_{a\mu}}$$
$$W_{ia} \leftarrow W_{ia} \frac{(XH^{T})_{\alpha\mu}}{(WHH^{T})_{\alpha\mu}}$$

Divergence Optimization

• Optimization problem:

$$\begin{array}{ll} \min_{W,H} & D(X|WH) = \sum_{ij} \left(X_{ij} \log \frac{X_{ij}}{(WH)_{ij}} - X_{ij} + (WH)_{ij} \right) \\ \text{s.t.} & W, H \ge 0 \end{array}$$

• Multiplicative Rules:

$$egin{aligned} & \mathcal{H}_{a\mu} \leftarrow \mathcal{H}_{a\mu} rac{\sum_i \mathcal{W}_{ia} X_{i\mu} / (\mathcal{WH})_{i\mu}}{\sum_i \mathcal{W}_{ia}} \ & \mathcal{W}_{ia} \leftarrow \mathcal{W}_{ia} rac{\sum_\mu \mathcal{H}_{a\mu} X_{i\mu} / (\mathcal{WH})_{i\mu}}{\sum_\mu \mathcal{H}_{a\mu}} \end{aligned}$$

Image: Image:

→ ∃ →

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

PCA and SVD

• Problem:

 $X_{n\times m} = W_{n\times r}H_{r\times m}$

 Principal Component Analysis (PCA)

 $X = U\Sigma V$

$$W = U\Sigma^{\frac{1}{2}}, H = \Sigma^{\frac{1}{2}}V$$

- PCA = SVD keeping the 'best' Eigenvectors
- Columns of U are orthonormal
- There is not restriction on sign.

D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, October 1999

- Documents are represented by the frequency of keywords (terms)
- Uses SVD to find the factorization
- Factors = semantic concepts
- Columns of W are orthonormal

W. Xu, X. Liu, and Y. Gong, "Document clustering based on non-negative matrix factorization," in SIGIR '03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM, 2003, pp. 267-273

- B - - B

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Neurocomputing 76 (2012) 50-60

Multimodal representation, indexing, automated annotation and retrieval of image collections via non-negative matrix factorization

Juan C. Caicedo^a, Jaafar BenAbdallah ^b, Fabio A. González^{a,*}, Olfa Nasraoui ^b

^a Computer Systems and Industrial Engineering Department, National University of Colombia, Cra 30 45 - 03, Ciudad Universitaria, Edif. 453, Of. 114. Bogotá, Colombia ^b Department of Computer Engineering and Computer Science, University of Louisville, Louisville KY, USA

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

3 NMF for Multimodal Learning

Semantic space

- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Multimodal Representation

э.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bag-of-Features Image Representation

(iii) Bag of features representation

Semantic Space: Multimodal Latent Indexing (I)

• Objects are described by terms in a textual vocabulary and a visual vocabulary

- Objects are described by terms in a textual vocabulary and a visual vocabulary
- Objects are mapped to a latent (semantic) space where objects are represented by a set of latent factors

- Objects are described by terms in a textual vocabulary and a visual vocabulary
- Objects are mapped to a latent (semantic) space where objects are represented by a set of latent factors
- NMF is used to build the latent representation

- Objects are described by terms in a textual vocabulary and a visual vocabulary
- Objects are mapped to a latent (semantic) space where objects are represented by a set of latent factors
- NMF is used to build the latent representation
- Three main tasks:
 - Multimodal clustering
 - Automatic image annotation
 - Image retrieval

Semantic Space: Multimodal Latent Indexing (II)

F. González

NMF for MM IR

ML 2015-II 35 / 54

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Multimodal Clustering

F. González

NMF for MM IR

ML 2015-II 37 / 54

Dual Multimodal Clustering

Semantic Space Visualization (I)

ML 2015-II 39 / 54

Semantic Space Visualization (II)

ML 2015-II 40 / 54

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Image Annotation

1. Apply NMF to training data

2. Find latent representation h of a visual vector x, x = W1 * h

3. Multiply *h* by *W* to get the multimodal vector [*x*, *y*]

NMF for MM IR

Collection	Query	Visual	Multimodal	Ground Truth	
Corel 5k	- and - and -	water sky plane tree	plane jet clouds sky	sky plane jet	
Corel 5k		water tree people grass	buildings water people sun	water sky buildings	
MIRFlickr		male people struc- tures people_r1 male_r1 female sky transport animals car	plant_life flower flower_r1 indoor sky structures people animals female fe- male_r1	female flower flower_r1 people plant_life struc- tures	
MIRFlickr		plant_life structures animals tree flower transport water male people dog	plant_life tree sky tree_rl structures wa- ter river clouds lake sea	clouds plant_life river river_r1 sky tree water	

・ロト ・日下・ ・ ヨト・

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

• Scenario: visual retrieval based on a visual query

- Scenario: visual retrieval based on a visual query
- Images are represented in a latent space using NMF

- Scenario: visual retrieval based on a visual query
- Images are represented in a latent space using NMF
- Some images in the database may not have text content associated

- Scenario: visual retrieval based on a visual query
- Images are represented in a latent space using NMF
- Some images in the database may not have text content associated
- The image query is projected the latent space

- Scenario: visual retrieval based on a visual query
- Images are represented in a latent space using NMF
- Some images in the database may not have text content associated
- The image query is projected the latent space
- Image are retrieved according to their latent space similarity

Model	Corel 5k		MIRFlickr		
	МАР	Gain (%)	МАР	Gain (%)	
Direct matching SVD mixed NMF mixed NMF asymmetric	0.1071 0.1780 0.1727 0.2369	N/A 66.2 61.2 121.2	0.5577 0.5743 0.5783 0.5837	N/A 2.98 3.67 4.67	

イロト イヨト イヨト イヨト

Semantic Space Dimension

ML 2015-II 47 / 54

The Problem

- Content-based image retrieval
- Semantic image retrieval
- Multimodal image retrieval

Matrix Factorization

- The Netflix Prize
- Non-negative matrix factorization
- NMF vs SVD

- Semantic space
- Multimodal clustering
- Image annotation
- Multimodal retrieval
- Application to histology images

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Histology image search using multimodal fusion

Juan C. Caicedo ^{a,*,1}, Jorge A. Vanegas ^b, Fabian Páez ^b, Fabio A. González ^b

^a University of Illinois at Urbana-Champaign, Sieble Center for Computer Science, 201 N Goodwin Ave, Urbana, IL 61801, USA ^b MindLab Research Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia

Image: Image:

Semantic Back Projection

▶ < 토▷ 토 ∽ Q < < ML 2015-II 50 / 54

Table 2

Retrieval performance of semantic strategies compared to visual matching. Numbers in bold indicate the best result obtained in each data set with respect to P@10 or MAP. Results show the trade-off between MAP and P@10 on all image collections. Semantic search produces superior MAP while visual search is a strong baseline for early precision. Chance performance refers to the expected performance of a random ranking strategy, and it is significantly lower than visual and semantic search.

Method	Cervical Cancer		Basal-cell C.		Histology Atlas	
	P@10	MAP	P@10	MAP	P@10	MAP
Visual matching (baseline)	0.5904	0.5214	0.4360	0.2928	0.7372	0.2751
Latent embedding (NMFA)	0.5067	0.6591	0.3176	0.4947	0.5263	0.6309
Direct embedding (NSE)	0.5414	0.6970	0.2543	0.4317	0.5230	0.6113
Chance performance	0.4623	0.4681	0.2183	0.1806	0.0978	0.1008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< □ > < 同 > < 回 > < 回 > < 回 >

fagonzalezo@unal.edu.co http://dis.unal.edu.co/~fgonza