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Dimensionality reduction

Eliminate the redundancy and the noise
present in the manifold structure of the
original high dimensional feature

representation.

Tackles the curse of dimensionality by
compressing the representation in a more
expressive reduced set of variables.



Semantic representation via matrix
factorization
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Problem

Multi-label Annotation

The multi-label annotation problem arises in situations such as
object recognition in images where we want to automatically find
the objects present in a given image.

The solution consists in learning a classification model able to
assign one or many labels to a particular sample.
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Problem

Two-way Multimodal Matrix Factorization

X > H—%> X

f:R" — R,
g: R —R"”
where n > r

Reconstruction of the original feature representation:

X, =~ W, W, X, (1)
Reconstruction of the original label representation: Q na
, I I I I LAB

X, ~ W, W, X 2
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Problem

Two-way Multimodal Matrix Factorization

Feature
representation

Semantic

Label representation

representation
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Problem

Optimization problem
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(Y controls the relative importance between the reconstruction of the instance
representation and the label representation.

controls the relative importance of the mapping between instance features

and label information
ﬁ controls the relative importance of the regularization terms, whichip el LAB
large values for the Frobenius norm of the transformation matrices.

Jorge A. Vanegas Two-way Multimodal Online Matrix Factorization for Multi-label



Strategy

Online learning

Loss function:

Q(Z, ”U)) = E(fw(xL y)

Gradient descent:

1 n
Webl = W= Z Vo Q(zi,wt),
i=1

Stochastic gradient descent:

W1 = Wy —’thw Q(Zt,wt)-
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Strategy

Online learning

* The learning rate Y can be either constant or gradually
decaying

* “Generally" move in the direction of the global minimum, but
not always

* Never actually converges like batch gradient descent does, but
ends up wandering around some region close to the global
minimum In practice, this isn't a problem
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Strategy

Two-way multimodal online matrix factorization algorithm

input r:latent space size, 7o: initial step size, epochs: number of epochs,
X, e R X, e R™ q, 6, B
Random initialization of transformation matrices:
W, = random_matrix (r,n)
W = random_matrix (n, r)
Wt/(o) = random_matrix (r, m)
W = random_matrix (m,r)
for i =1 to epochs do
for j=1to / do

T=1iXJ
x$7, xt(T{ + sample_without_replacement (X, , X;)
Compute gradients:
gf/;,):V L (7w w0, w0, W)
gW = VL (x *), @ W, w,e W(T )

g ; 7V L(XVT) xt ) wi W/(T Qnd
=Vuwl ( ) x Wi w ”,W}T,W{“’) I I I I LAB
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Strategy

Two-way multimodal online matrix factorization algorithm

Update term calculation using momentum:
AW, = g 4 paw, Y

WV
AW = —ygl) 4+ pawTY
AWt(T) = *’Y(T)g‘(/;/) + pA Wt(T_l)

t
AWt(T) = _’Y(T)gl(/;/—t) + pAWt(Til)
Update transformation matrices:
WV/(T-H) — W‘:(T) + AW‘:(T)
Wi = Wi + AW
W;(T‘*'l) — W:(T) —|—AW;(T)
W = w4 aw

end for
end for

return W, ™, Wi, w, ™, w® m % nd
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Prediction

Strategy

Instance
representation
WV
bel Semantic
Labe ) representation
representation
xt W’ .
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Strategy

Annotation

@ The transformation of the input features generates an
m—dimensional vector with an smoothed label representation
e The final decision to assign a label would be taken by defining
a threshold

o assign 1 to the j — th label if x;j 2 threshold, or we can assign
1 to the top—k labels with the highest values in the vector.

Jorge A. Vanegas Two-way Multimodal Online Matrix Factorization for Multi-label



Strategy

Implementation details

o Pylearn2 library:
.theano:

<nd
http://deeplearning.net/software/pylearn2/ I LAB
2http://deeplearning.net/software /theano/
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Strategy

Experiments and Results

@ 80% of the images for training
@ the remaining 20% for test
o Were compared against 8 MLLSE? algorithms:

OVA: One-versus-all

CCA: Canonical Correlation Analysis

CS: Compressed Sensing

PLST: Principal Label Space Transform
MME: Multilabel max-margin embedding
ANMF, MNMF, OMMF

m i PACIIB

3multi-label latent space embedding
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Strategy

Datasets

ataset ore ibtex edialvhi
Labels 374 159 101
Features 500 1,836 120
Label cardinality | 3,522 2,402 4.376
Examples 5,000 7,395 43,907

The method was evaluated on 3 standard multilabel datasets
distributed by the mulan framework authors
(http://mulan.sourceforge.net/datasets.html)

m i PA%'
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Strategy

F-Measure for each method

Performance of each method in terms of f-measure

Method Corelbk Bibtex MediaMill
OVA 0.112 0.372 _
CCA 0.150 0.404 _

CS 0.086 (50) 0.332 (50) _

PLST 0.074 (50) 0.283 (50)

MME 0.178 (50) 0.403 (50) 0.199 (350)
ANMF 0.210 (30) 0.297 (140)  0.496 (350)
MNMF 0.240 (35) 0.376 (140)  0.510 (350)
OMMF 0.263 (40) 0.436 (140) 0.503 (350)

Our Method 0.283 (100) 0.422 (300) O. 540ﬁ£‘)§nd
1 LAB

Sebastian Otalora-Montenegro et al. [1
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Conclusions

Conclusions and Future Work

@ We presented a novel multi-label annotation method which
learns a mapping between the original sample representation
and labels by finding a common semantic representation.

@ We propose a model that finds a mapping from the sample
representation space to a semantic space, and simultaneously
finds a back-projection from the semantic space to the original
space.

@ This method is formulated as an online learning algorithm
allowing to deal with large collections.

@ One important limitation is that the method assumes linear
dependencies between the data modalities Q
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Conclusions
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Motivation

Challenges Proposed Solution

Low dimensional embedding
representation

High dimensional data

Reduced number of labeled Semi—supervised learning via
data matrix factorization

Huge amount of unstructured Stochastic gradient

datlf'/l: bl | descent
AsSIVE Unfabeled examples * GPU implementation
available




Semi-supervised learning

Q

Manifold learning for classification



Semi-supervised learning

B ] * Unlabeled samples
L tomiog ™ | @ Labeled - positve
‘w. Labeled - negative
- -

Data with Noisy Labels Constructed Graph
5 .-2°f

fi'v 3

¢ Prediction — positive
o Prediction = negative|
¢ 0

After Label Tuning Final Prediction

Annotated instances are used to maximize the discrimination between classes,
but also, non-annotated instances can be exploited to estimate the intrinsic
manifold structure of the data.



Model

Feature
Representation

Wx
Semantic
! Representation
W x \
Label 1
Representation W't
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Model

k , 2 l A
L=oaY |lx—WWex| +(1-a)) |6—W Wi
= i=1
I , 2 ) 2k 2 /|2
+8Y |- wwaxi| +p (||WV||F+HWV F+”W’”F+‘W’ F)
=1

X; feature vector of the j-th instance in the data collection X
t. binary label vector of the i-th instance

k instances for training

I labeled instances

k>>1



Experiments

Experimental Setup:

e Parameter exploration by using 5-fold cross
validation.

e Average classification accuracies for 10
runs evaluated by using 1-KNN setup similar
as in [Zhao et al. 2014].

e Linear supervised, semi-supervised and
unsupervised dimensionality reduction
methods as baselines.



Datasets
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Datasets

Datasets partitions

Original dataset partitions Low-scale partitions Large-scale evaluation
Dataset #Dim #Class
Train Test Train Test Train Test
Covtype 581012 8000 8000 100000 2000 54 7
MNIST 60000 10000 8000 8000 60000 10000 784 10
Letters 20000 8000 8000 - 16 26
USPS 4649 4649 4649 4649 - 256 10




Classification accuracy for different percentages of annotated

instances

STWOMF STWOMF PCA

METHOD SDA LDA SRDA
r=C r=C+10 r=C -
100%  0.725 0.770  0.735 0.708 0.698 0.707
COVTYPE 60% 0.720 0.755  0.719 0.704 0.685 0.683
30% 0.686 0.712  0.687 0.707 0.653 0.639
100%  0.882 0.939 0.870 0.897 0.856 0.874
MNIST  60% 0.864 0.930 0.870 0.890 0.833 0.863
30% 0.848 0.916 0.850 0.881 0.786 0.842
100%  0.946 0.946  0.950 0.699 0.936 0.940
LETTERS 60% 0.933 0.923  0.940 0.694 0919 0.913
30% 0.905 0.885  0.917 0.680 0.893 0.872
100%  0.936 0.966  0.925 0.943 0.921 0.930
USPS  60% 0.927 0.957  0.917 0.939 0.906 0.921

30% 0.910 0.942 0.903 0.926 0.884 0.903




Avg. Classification Accuracy

Covtype Mhnist

Labeled samples (in thousands)
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For all training sizes only 30% of instances are annotated



Avg. Training time

Covtype Mhnist

Labeled samples (in thousands)
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Conclusions

We presented a method whose main
characteristics are:

e Modeling a semantic low-space representation

Preserving the separability of the original classes

e Ability to exploit unlabeled instances for
modeling the manifold structure of the data

® Online formulation
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