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Eliminate	the	redundancy	and	the	noise	
present	in	the	manifold	structure	of	the	

original	high	dimensional	feature	

representaGon.		

	 Tackles	the	curse	of	dimensionality	by	
compressing	the	representaGon	in	a	more	

expressive	reduced	set	of	variables.	

Dimensionality reduc+on




•  Latent Seman+c 
Analysis (LSA)



[Dumai et al. 2004]


•  Nonnega+ve Matrix 
Factoriza+on (NMF)



[Lee et al. 1999] 


SemanGc	representaGon	via	matrix	

factorizaGon	



Problem
Strategy

Conclusions

Two-way Multimodal Online Matrix Factorization
for Multi-label Annotation

(ICPRAM)

Jorge A. Vanegas

MindLAB Research Group - Universidad Nacional de Colombia

November 24, 2015

Jorge A. Vanegas Two-way Multimodal Online Matrix Factorization for Multi-label Annotation



Problem
Strategy

Conclusions

Multi-label Annotation

The multi-label annotation problem arises in situations such as
object recognition in images where we want to automatically find
the objects present in a given image.
The solution consists in learning a classification model able to
assign one or many labels to a particular sample.
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Two-way Multimodal Matrix Factorization

f : Rn ! Rr ,

g : Rr ! Rn

where n � r

Reconstruction of the original feature representation:

Xv t W

0
vWvXv (1)

Reconstruction of the original label representation:

Xt t W

0
tWtXt (2)
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Two-way Multimodal Matrix Factorization

Xt = W

0
tWvXv
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Optimization problem
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↵ controls the relative importance between the reconstruction of the instance

representation and the label representation.

� controls the relative importance of the mapping between instance features

and label information

� controls the relative importance of the regularization terms, which penalizes

large values for the Frobenius norm of the transformation matrices.
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Online learning
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Two-way multimodal online matrix factorization algorithm

input r :latent space size, �0: initial step size, epochs: number of epochs,

Xv 2 Rn⇥l
, Xt 2 Rm⇥l

, ↵, �, �
Random initialization of transformation matrices:

W

0(0)
v = random matrix (r , n)

W

(0)
v = random matrix (n, r)

W

0(0)
t = random matrix (r ,m)

W

(0)
t = random matrix (m, r)

for i = 1 to epochs do
for j = 1 to l do

⌧ = i ⇥ j

x

(⌧)
v , x (⌧)
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Compute gradients:
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Two-way multimodal online matrix factorization algorithm

...
Update term calculation using momentum:
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Prediction

x̃t = W

0
tWvxv
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Annotation

The transformation of the input features generates an
m�dimensional vector with an smoothed label representation

The final decision to assign a label would be taken by defining
a threshold
assign 1 to the j � th label if ˜xt,j = threshold , or we can assign
1 to the top�k labels with the highest values in the vector.
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Implementation details

Pylearn2 library 1

2

1
http://deeplearning.net/software/pylearn2/

2
http://deeplearning.net/software/theano/
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Experiments and Results

80% of the images for training

the remaining 20% for test

Were compared against 8 MLLSE3 algorithms:

OVA: One-versus-all
CCA: Canonical Correlation Analysis
CS: Compressed Sensing
PLST: Principal Label Space Transform
MME: Multilabel max-margin embedding
ANMF, MNMF, OMMF

3
multi-label latent space embedding
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Datasets

Dataset Corel5k Bibtex MediaMill
Labels 374 159 101

Features 500 1,836 120
Label cardinality 3,522 2,402 4.376

Examples 5,000 7,395 43,907

The method was evaluated on 3 standard multilabel datasets
distributed by the mulan framework authors
(http://mulan.sourceforge.net/datasets.html)
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F-Measure for each method

Performance of each method in terms of f-measure

Method Corel5k Bibtex MediaMill

OVA 0.112 0.372
CCA 0.150 0.404
CS 0.086 (50) 0.332 (50)

PLST 0.074 (50) 0.283 (50)
MME 0.178 (50) 0.403 (50) 0.199 (350)
ANMF 0.210 (30) 0.297 (140) 0.496 (350)
MNMF 0.240 (35) 0.376 (140) 0.510 (350)
OMMF 0.263 (40) 0.436 (140) 0.503 (350)

Our Method 0.283 (100) 0.422 (300) 0.540 (300)

Sebastian Otálora-Montenegro et al. [1]
Sunho Park et al. [2]

Jorge A. Vanegas Two-way Multimodal Online Matrix Factorization for Multi-label Annotation



Problem
Strategy

Conclusions

Conclusions and Future Work

We presented a novel multi-label annotation method which
learns a mapping between the original sample representation
and labels by finding a common semantic representation.

We propose a model that finds a mapping from the sample
representation space to a semantic space, and simultaneously
finds a back-projection from the semantic space to the original
space.

This method is formulated as an online learning algorithm
allowing to deal with large collections.

One important limitation is that the method assumes linear
dependencies between the data modalities
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and Fabio A. González.
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Challenges	 Proposed	Solu7on	

High	dimensional	data

Low	dimensional	embedding	

representaGon 


Reduced	number	of	labeled	

data

Semi–supervised	learning	via	

matrix	factorizaGon 


Huge	amount	of	unstructured	

data:	

•  Massive	unlabeled	examples	

available


•  StochasGc	gradient		
descent	

•  GPU	implementaGon 


Mo+va+on




Semi-supervised learning


Manifold	learning	for	classifica7on	



Semi-supervised learning


Annotated	instances	are	used	to	maximize	the	discriminaGon	between	classes,	

but	also,	non-annotated	instances	can	be	exploited	to	esGmate	the	intrinsic	

manifold	structure	of	the	data.		



n>>r	

Model




Model


Xi				feature	vector	of	the	i-th	instance	in	the	data	collecGon	X		
ti					binary	label	vector	of	the	i-th	instance		
k					instances	for	training	
l						labeled	instances	
	

k	>>	l	
	



Experimental Setup: 
 
●  Parameter exploration by using 5-fold cross 

validation. 
●  Average classification accuracies for 10 

runs evaluated by using 1-KNN setup similar 
as in [Zhao et al. 2014]. 

●  Linear supervised, semi-supervised and 
unsupervised dimensionality reduction 
methods as baselines. 

Experiments




Datasets




Datasets par++ons


Datasets




ClassificaGon	accuracy	for	different	percentages	of	annotated	

instances	



Avg. Classification Accuracy 
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For	all	training	sizes	only	30%	of	instances	are	annotated	
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Conclusions 

We	 presented	 a	 method	 whose	 main	

characterisGcs	are:	

	

●  Modeling	a	semanGc	low-space	representaGon	

●  Preserving	the	separability	of	the	original	classes	
●  Ability	 to	 exploit	 unlabeled	 instances	 for	

modeling	the	manifold	structure	of	the	data	

●  Online	formulaGon	
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