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Problem statement )
Histology and Histopathology m ¥nd

Histology

“Histology is the study of the tissues of the body and how these tissues are
arranged to constitute organs " Junqueira, 2009

Histopathology

It refers to the microscopic examination of tissue in order to study the
manifestations of disease.
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Introduction Problem statement
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Histology visual variability m ¥nd
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Automatic histopathology image analysis
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Introduction Automatic histopathology image analysis

Image representation m %) PA%I

@ Transformations of the data that make it easier to extract useful
information when building classifiers or other predictors.

o Classic representations (e.g. Fourier analysis) that are fixed based on
some general theoretical criteria completely ignore what kind of data
is being analyzed.

@ Hand-engineered representations that are devised to solve a particular
problem are manually engineered by an expert.

@ “We do not believe that there could be a single set of features which
would be optimal for all kinds of images” Hyvarinen, 2009 (NIS)

@ In contrast, an adaptive (learned) representation is one that does not
attempt to represent all possible kinds of data; instead, the
representation is adapted to a particular kind of data.
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Feature learning
Feature learning-based image analysis I I l%nd

Learned
features

Training
Dataset

Model
prediction

Image classification

Cancer  Normal
New Image

Representation learning for histopathology image analysis



Feature learning
Feature learning-based image analysis I I l%ﬂg
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Feature learning
Unsupervised Feature Learning and Deep Learning I I I | LAB

@ Deep learning
architectures mimic the
hierarchical structure of
visual system.

@ Successive layers learn
more complex features
based on basic features
from the previous layer.
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Feature learning
: : : 9]
Unsupervised feature learning and deep learning ' I | nd

Deep learning is attracting much attention both from the academic and
industrial communities mainly because of their success in several areas.

Improving Photo Search: A Step Across the Semantic Gap U of T News

Posted by Chuck Rosenberg, Image Search Team

Google acquires U of T neural networks company

Last month at G , we showed a major ience: you can now easily search your own
s without havmg to manuaHy Iabel each and every one of them. This is powered by computer vision and machine
o . Facebook Launches Advanced
I0BREAKTHROUGH ™" Science

AT Effort to Find Meaning in
Your Posts

TECHNOLOGIES 2013 e oo v momes e smms w1

Scientists See Promise in Deep-Learning Programs

Atechnique called deep learning could help Facebook understand
itsusers and their data better.

Deep
Learning

mransiated a speech given by Fchard F. RasHid,Microsofts top ci

Baidu Opens Lab in Silicon Valley
Yahoo Acquires Startup LookFIow To WOrk On Flickr Devoted to Research into ‘Deep Learning’
And ‘Deep Learning’

Anthony Ha

Withmassive
amounts of
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Introduction Feature learning

Research questions m %) PA%I

o Does a feature learning approach
successfully work in histopathology
image classification?

o If so, how the criteria used by a
classifier can be visualized to support
the decision made by such classifier?
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Overview
Learning-based automatic image analysis I I l I
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Proposed framework Feature learning strategy
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Proposed framework Feature learning strategy

Autoencoders m % PA%I

LayerL, Layer L,

Layer L,

re(X) = g(f(X)) = X,
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Proposed framework Feature learning strategy

Autoencoders m % PA%I
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Proposed framework Feature learning strategy

Autoencoders m % PA%I
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Proposed framework Feature learning strategy

Autoencoders m % PA%I

X; —>
Recons-
X3 —> truction
- L]
A |

ma

LayerL, Layer L,

Layer L,

J(G) =L (Xa re (X)) +R (X7 6) )

John Arevalo Representation learning for histopathology image analysis




Proposed framework Feature learning strategy

Sparse autoencoders (sAE) m <nd

1 m ) 2 n R ~y )
JW) =53 |re@™) =2+ 83" KL (llpy) +5 (IWIE+ W'
i=1 j=1

; regularization
Reconstruction €

Sparsity constraint

@ It is an unconstrained problem which can be solved using
gradient-based methods.
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Proposed framework Feature learning strategy

detectors learned with sAE
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RICA Ynd
I I I I LAB
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RICA Ynd
I I I I LAB
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Feature learning strategy
Reconstruct Independent Component Analysis (RICm %) PA%I

J(W) = % i HWTWM _ 0
=1

Vv NV
Reconstruction Regularization

@ It is an unconstrained problem which can be solved using
gradient-based methods.

@ Only one hyperparameter to adjust.
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Proposed framework Feature learning strategy

Moving to topographic representation I I I%PA%I
RICA m n
J(W) = £(X,rw (X)) + >3/ (Wja®)? + e
i=1j=1

Regularization

TICA:
m
J(W) =L (X, rw ( +ZZ\/Hk Wz®) 4 ¢,
i=1 k=1
Regularization
This is also an unconstrained problem which can be solved using
gradient-based methods. J
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Feature learning strategy
Learned features

m
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Proposed framework Feature learning strategy

Topographic Representation m % LnAg

Grouping adjacent features together in the smoothed L1 norm penalty
make that their activations be similar yielding to invariant properties.
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Feature learning strategy
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Image representation
Image representation I I l I PA%I
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Image representation
Bag-of-features (BOF) image representation ' I |Q nd
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Image representation
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Image representation
: : 9]
BOF image representation I I l nd
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Image representation
| | Ynd
Convolutional neural networks (CNN) image repres 'PFAB
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Image representation
Convolutional neural networks (CNN) image represm%ﬂg

Input layer Feature maps

l Convolution layer l Paoaling layer | Classifier |
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Image representation
. . g
Deep CNN image representation ' I | nd
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Proposed framework Image representation
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Visualization
Visualization I I I I LAB
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Proposed framework Visualization

Visualization m
=

Classification Digital staining
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Basal Cell Carcinoma (BCC) Case study

BCC is the most common skin
cancer.

It may cause significant tissue
damage, destruction and
disfigurement.

The diagnosis is performed by
visual inspection of a
histopathology slide from a
biopsy sample.

Prognostic is excellent, as long
as the appropriate treatment is
used in early diagnosis.
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The challenge: Visual variability m ¥nd

BCC images have the high variability of biological structures associated to
different morphology and architectural arrangements of cells in cancer or
non-cancer tissues.

Cancer

Non-cancer
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Experimental evaluation

Experimental evaluation

@ 1417 color images, (150 x 150 pixels at 10X), manually annotated by
a pathologist (618 cancer, 899 non-cancer)

@ Experiments were performed on a 5-fold cross validation scheme with

stratified sampling.

Accuracy Image representation
F-Score CNN
Bag of features
Balanced Acc. one layer | deep
S | Haar Baseline
£ | DCT Baseline
8 | sAE
o | RICA
s | TICA
©
a
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Experimental evaluation

Canonical features vs Learned features

] Feature \

Accuracy

F-Score

BAC

Haar

0.796 +/- 0.026

0.708 +/- 0.031

0.772 +/- 0.026

DCT

0.891 +/- 0.023

0.851 +/- 0.027

0.883 +/- 0.024

sAE

0.925 +/- 0.027

0.899 +/- 0.027

0.917 +/- 0.024

RICA

0.926 +/- 0.029

0.899 +/- 0.033

0.920 +/- 0.032

TICA

0.936 +/- 0.022

0.914 +/- 0.027

0.933 +/- 0.020
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BOF representation vs CNN representation I I ﬁﬂ\%‘
0.92
M BOF M CNN

0.9

0.88

F-Score

0.86

0.84
SAE RICA TICA
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Experimental evaluation
.1
\Q( d

Stacked representation I I l I LAB

0.93
M 1stLayer M 2ndLayer [ Combined

0.92

0.9

F-Score

0.89

0.88
SAE RICA TICA
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Experimental evaluation

Overall classification results

m | PA%I

‘ F-Score ‘ BAC ‘

Representation ‘ Accuracy

TICA combined layers

0.944 +/- 0.025

0.925 +/- 0.031

0.941 +/- 0.027

RICA combined layers

0.935 +/- 0.025

0.912 +/- 0.026

0.931 +/- 0.023

AE combined layers

0.933 +/- 0.026

0.908 +/- 0.029

0.926 +/- 0.025

TICA Second layer

0.937 +/- 0.015

0.913 +/- 0.020

0.931 +/- 0.017

AE Second layer

0.916 +/- 0.034

0.886 +/- 0.039

0.907 +/- 0.031

TICA First Layer

0.936 +/- 0.022

0.914 +/- 0.027

0.933 +/- 0.020

RICA First Layer

0.926 +/- 0.029

0.899 +/- 0.033

0.920 +/- 0.032

AE First Layer

0.925 +/- 0.027

0.899 +/- 0.027

0.917 +/- 0.024

(BOF) ColorDCT-400

0.891 +/- 0.023

0.851 +/- 0.027

0.883 +/- 0.024

(BOF) Haar-400

0.796 +/- 0.026

0.708 +/- 0.031

0.772 +/- 0.026

John Arevalo

Representation learning for histopathology image analysis




Experimental evaluation

Invariant features

invariances
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TICA model was able to detect translational, color
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Topographic organization

Softmax weights mapped back to topographic organization (left) and

learned features(right) highlighting Cancer and Non-cancer classes.
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Experimental evaluation

Digital staining and

True

Cancer Non-cancer
class

Input

image

Prediction Cancer

Non-cancer
Probability 0.901 0.925

0.147 0.460
Digital

staining
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Digital staining m%&g

Pathologist concept

The digitally stained image highlights two main criteria to perform
diagnosis: cell proliferation and peripheral palisade.
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Conclusions ' I IQ nd

@ The results showed that, in general, features learned from data
performed better than traditional hand-engineered features for the
BCC detection task.

@ The proposed method is able to capture and organize relevant
patterns of each class totally unsupervised.

@ Invariance properties considerably improved classification performance
with respect to current state-of-the-art approaches.

@ The interpretation stage of the proposed framework allows to
understand why the classifier assigns a concept to a particular image.

o Learned features and visualization results are consistent with the
nature of the problem.
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Conclusions

Thank you for your attention!!
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