Assignment 1
Applying Machine Learning


Due: Thursday February 7th
 Machine Learning
2008-I

  1. Everybody in the course has an assigned task (see table below). 
  2. The task may be accomplished individually or in group. 
  3. On February 7th, each group must bring a presentation (maximum 6 slides) that:

Task Assigned to
1. To get IRIS data set
http://archive.ics.uci.edu/ml/datasets/Iris
Everybody
2. To describe the data set
  • Origin, attributes, classes
  • "Scatter plot"
  • 2D visualization (PCA or MDS)
  • David Camilo Becerra Romero
  • José Luis  Morales
3. Decision trees:
  • train a decision tree
  • describe the obtained model
  • evaluate its performance
  • Rolando Beltran Arrieta
  • Daniel Restrepo Montoya
4. Neural network:
  • design an appropriate network to solve the problem
  • train it
  • evaluate its performance
  • Alexander Ceron Correa
  • Luis Alejandro Riveros Cruz
5. Naïve Bayes:
  • train a Naive-Bayes classifier
  • describe the obtained model
  • evaluate its performance
  • Jimmy Alexander Cifuentes Rodriguez
  • Maria Eugenia Rojas Izaquita
6. Linear Regression:
  • propose a linear model to solve the problem (1 class against the others, multi-class)
  • evaluate its performance
  • Emir Fredy Cortes Trujillo
  • Edwin Andres Niño Velasquez
7. k-nearest neighbors
  • train a k-nn classifier
  • describe the obtained model
  • evaluate its performance
  • Miguel Dario Dussan Sarria
  • Omar Guillermo Erazo
8. Support Vector Machine:
  • train a SVM classifier
  • describe the obtained model
  • evaluate its performance
  • Camilo Ernesto López Guarín
  • Sandra Patricia    Tocarruncho Tocarruncho
10. K-means:
  • cluster the data using K-means
  • describe the obtained clustering
  • Visualize the results
  • Carlos Alfonso Garzon Mape
  • Wilson Eduardo Soto Forero
11. Hierarchical Clustering:
  • cluster the data using hierarchical clustering
  • describe the obtained clustering
  • Visualize the results
  • Jeison Dario Gutierrez Juya
  • Javier Fernando    Vargas Gonzalez