Assignment 1
Applying Machine Learning


Due: Tuesday March 3rd
 Machine Learning
2009-I

  1. Everybody in the course has an assigned task (see table below). 
  2. The task may be accomplished individually or in group. 
  3. On March 3rd, each group must bring a presentation (maximum 6 slides) that:

Task Assigned to
1. To get IRIS data set
http://archive.ics.uci.edu/ml/datasets/Iris
Everybody
2. To describe the data set
  • Origin, attributes, classes
  • "Scatter plot"
  • 2D visualization (PCA or MDS)
JAIME EDUARDO BELTRAN PARDO
JOHN MORENO
3. Decision trees:
  • train a decision tree
  • describe the obtained model
  • evaluate its performance
JOSE LUIS MORALES
ANDRES CASTILLO
4. Neural network:
  • design an appropriate network to solve the problem
  • train it
  • evaluate its performance
WILFREDY SANTAMARIA RUIZ
PAULO CESAR ROJAS GUILLEN
5. Naīve Bayes:
  • train a Naive-Bayes classifier
  • describe the obtained model
  • evaluate its performance
TATIANA SUAREZ FONTANILLA
ANDRES LEONARDO CUBILLOS RODRIGUEZ
6. Linear Regression:
  • propose a linear model to solve the problem (1 class against the others, multi-class)
  • evaluate its performance
JULIAN DAVID VARGAS ALVAREZ
RODOLFO ALEXANDER TORRES PORTILLA
JOHAN LEITHON
7. k-nearest neighbors
  • train a k-nn classifier
  • describe the obtained model
  • evaluate its performance
OMAR GUILLERMO ERAZO CRUZ
ANYELA MILENA CHAVARRO MUŅOZ
8. Support Vector Machine:
  • train a SVM classifier
  • describe the obtained model
  • evaluate its performance
ANDRES YESID RAMIREZ AYA
RAUL ERNESTO TORRES CARVAJAL
10. K-means:
  • cluster the data using K-means
  • describe the obtained clustering
  • visualize the results
LUIS HERNAN OCHOA GUTIERREZ
ROBINSON ANDRES JAQUE PIRABAN
11. Hierarchical Clustering:
  • cluster the data using hierarchical clustering
  • describe the obtained clustering
  • isualize the results
EDUARDO JAVIER ORTEGA URREGO
ALVARO ENRIQUE UZAHETA BERDUGO