20011-II Departamento de Ingeniería de Sistemas e Industrial Universidad Nacional de Colombia |
Ing. Fabio A. González O., Ph.D. Of. 114, Edif. Nuevo de Ingeniería fagonzalezo_at_unal.edu.co |
Topic | Material | Assignments | Presentations |
---|---|---|---|
1. Introduction |
Brief Introduction to ML [Mit97] Cap 1 [Alp10] Cap 1,2 [DHS00] A.1, A.2 |
Assignment 1 | Videos: Machine Learning: A Love Story Rethinking the Automobile Review: Linear Algebra and Probability Review (part 1 Linear Algebra, part 2 Probability) |
2. Bayesian decision theory 2.1 A review of probability theory 2.2 Classification 2.3 Loss and risk 2.6 Maximum likelihood estimation 2.7 Bayesian estimation 2.8 Parametric Classification |
[Alp10] Chap
3,
Chap
4, Chap 5 [DHS00] Chap 3 [Tenenbaum06] |
Assignment 2 (dataset) |
|
3. Graphical models 3.1 Conditional independence 3.2 Naive Bayes classifier 3.3 Hidden Markov 2.5 Bayesian Networks 2.6 Belief propagation 2.7 Markov Random Fields |
[Alp10] Chap 16 Markov Random Fields |
Assignment 3 | Video: Embracing uncertainty: the new machine intelligence Presentations: (Sept 8) Diana García - Alexander Urieles [Bishop07] Andrés Torres - Jorge Santos [Pardo05] |
3. Kernel methods 3.1 The kernel trick 3.2 Kernel ridge regression 3.3 Kernel functions 3.4 Other kernel Algorithms 3.5 Kernels in complex structured data |
[SC04] Chap 2 [Alp10] Chap 13 Introd. to kernel methods |
Presentations: (Sept 20) Anibal Montero - Jorge Vanegas [Lazebnik06] Sergio Aristizabal - Iván Martínez [Tikk10] |
|
4. Support vector learning 4.1 Support vector machines 4.2 Regularization and model complexity 4.3 Risk and empirical risk 4.4 SVM variations |
[Alp10] Chap 13 An introduction to ML, Smola Support Vector Machine Tutorial, Weston |
Assignment 4 | Presentations: (Sept 27-Nov 1) Carlos M. Estevez-Edwin Ovalle [Bleakley07][Ben-Hur05] Felipe Cadena - Andrés Eslava [Smola04] |
5. Performance evaluation 5.1 Performance evaluation in supervised learning 5.2 Performance evaluation in unsupervised learning 5.3 Hypothesis testing |
[Alp10] Chap 19 [TSK05] Chap 8 (Sect. 8.5) |
Presentations: (Nov 8-Nov 10) Ernesto Varela - Marla Barrera [Demsar06] Fabián Narvaez [Fawcett06] |
|
6. Unsupervised learning 6.1 Mixture densities 6.2 Expectation maximization 6.3 Mixture of latent variables models 6.4 Latent semantic analysis 6.5 Non-negative matrix factorization |
[Alp10] Chap 7 Latent Semantic Indexing, Prasad Generative Learning for BOF, Lazebnik NMF for Multimodal Image Retrieval, González |
Presentations: (Nov 24) Santiago Pérez - David Bermeo [Ding08] John Arévalo - Fabio Parra [Dhillon04] |
|
7. Learning on complex-structured and non-structured data 7.1 Sructured output prediction 7.2 Structured SVM |
Presentations: (Nov 29) Sebastián Otálora - Juan Gabriel Romero [Cabestany05] Sergio Ortiz - Alfredo Bayuelo [Joachims09] |
||
Final Exam: | Dec 1 | ||
Project: | Dec 13 |