Introduction to Deep Learning for Text Analysis and Understanding

COSC 7336: Advanced Natural Language Processing Fall 2017

Instructors

UNIVERSITY of

HOUSTON

Fabio Gonzalez UNIVERSIDAD Full Professor UNIVERSIDAD National University of Colombia UNIVERSIDAD Visiting Professor at UH Email: fagonzalezo@unal.edu.co Office: PGH 598 Office: PGH 598
Thamar Solorio Associate Professor University of Houston Email: thamar.solorio@gmail.com Office: PGH 584

Today's Lecture

- ★ Intro to DL
- ★ Why DL is a promising direction to solve NLP problems
- ★ Overview of the field of NLP
- ★ Course Administrivia

Intro to DL

https://www.youtube.com/watch?v=cNxadbrN_al

Rosenblatt's Perceptron (1957)

- Input: 20x20 photocells array
- Weights implemented with potentiometers

IVERSITY of

HOUSTON

• Weight updating performed by electric motors

Neural networks timeline

UNIVERSITY of HOUSTON

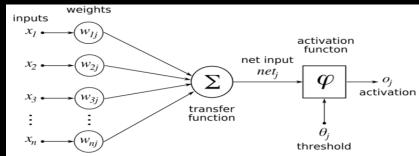
McCulloch & Pitts Artificial Neuron

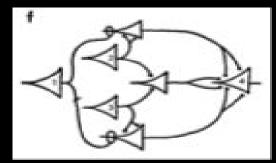
BULLETIN OF MATHEMATICAL BIOPHYSICS VOLUME 5, 1943

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

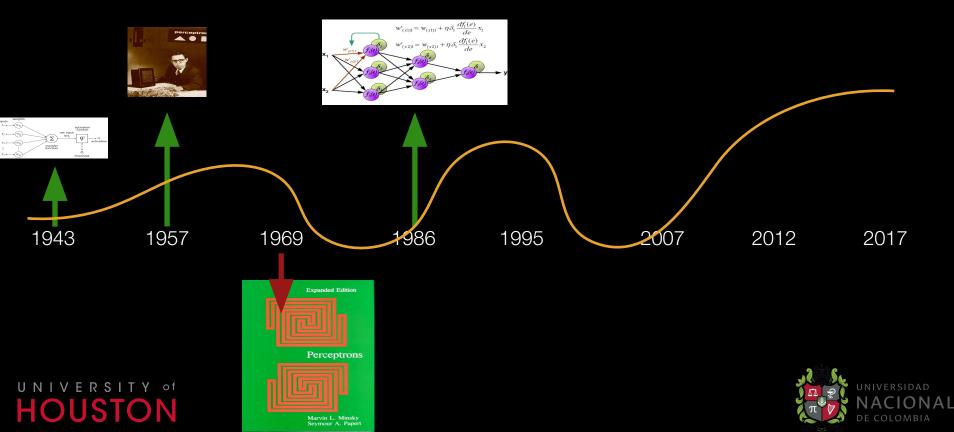
FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE, DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, AND THE UNIVERSITY OF CHICAGO





UNIVERSITY of HOUSTON

Neural networks timeline



Backpropagation

$$w'_{(x1)1} = w_{(x1)1} + \eta \delta_1 \frac{df_1(e)}{de} x_1$$

$$w'_{(x2)1} = w_{(x2)1} + \eta \delta_1 \frac{df_1(e)}{de} x_2$$

$$w'_{(x2)1} = w_{(x2)1} + \eta \delta_1 \frac{df_1(e)}{de} x_2$$

$$letters to nature$$
Nature 323, 533 - 536 (09 October 1986):
Learning representations
by back-propagating error
David E. Rumelhart*, Geoffrey E

 $w'_{(x2)1} = w_{(x2)1} + \eta \,\delta_1 \frac{df_1(e)}{de} x_2$ etters to nature

lature 323, 533 - 536 (09 October 1986); doi:10.1038/323533a0

earning representations. y back-propagating errors

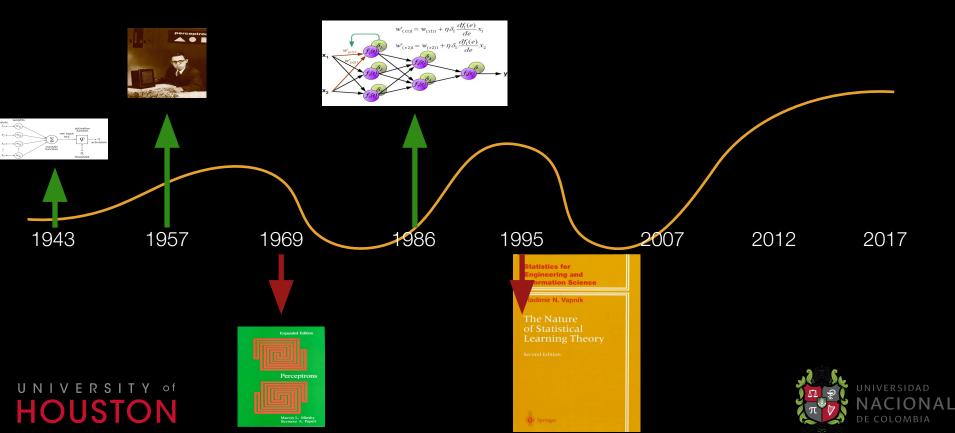
avid E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon Universit Pittsburgh, Philadelphia 15213, USA

Source: http://home.agh.edu.pl/~vlsi/Al/backp t en/backprop.html UNIVERSITY of HOUSTON

nature

Neural networks timeline



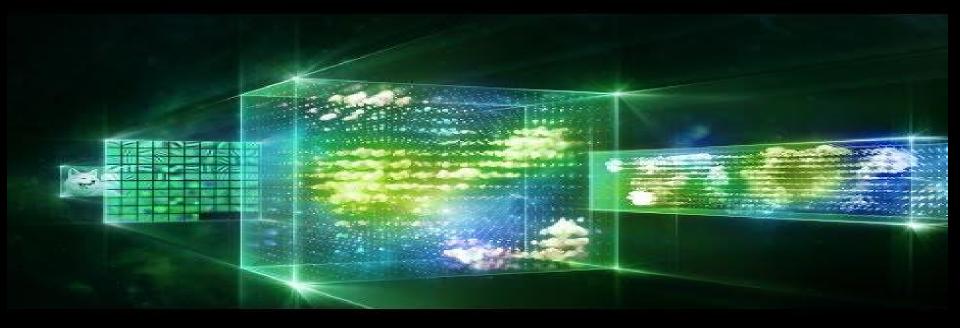
My own history with NN (circa 1993)

Quick and Dirty Introduction to Neural Networks

Interactive Demo

1 earning)ee

Deep learning boom



Deep learning boom

Technology

By Dann FACEBOOK TAPS 'DEEP LEARNING' GIANT FOR NEW AI

ents 🤇

2928 <

GOOGLE HIRES I

HELPED SUPERC

MACHINE LEARN

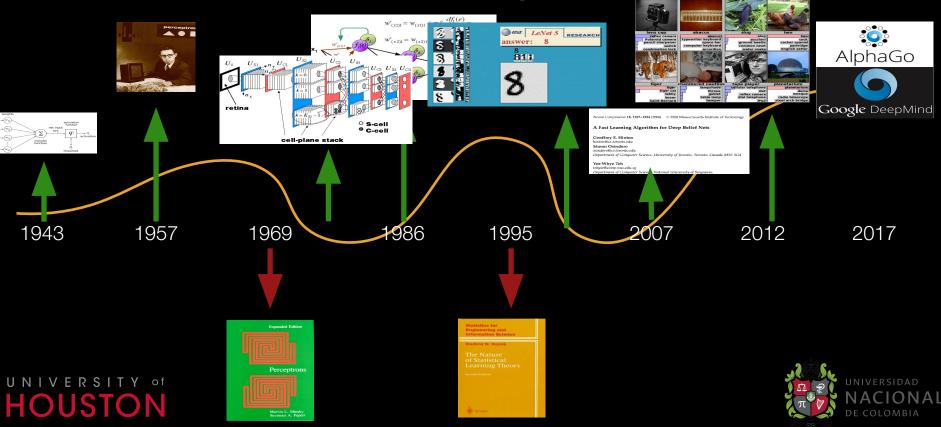
DRIVING

Acc

Here's How Deep

rch Giant Ian Behind Brain"

Deep learning time line



Deep Learning is Born

Neural Computation 18, 1527-1554 (2006)

© 2006 Massachusetts Institute of Technology

2000 top-level units

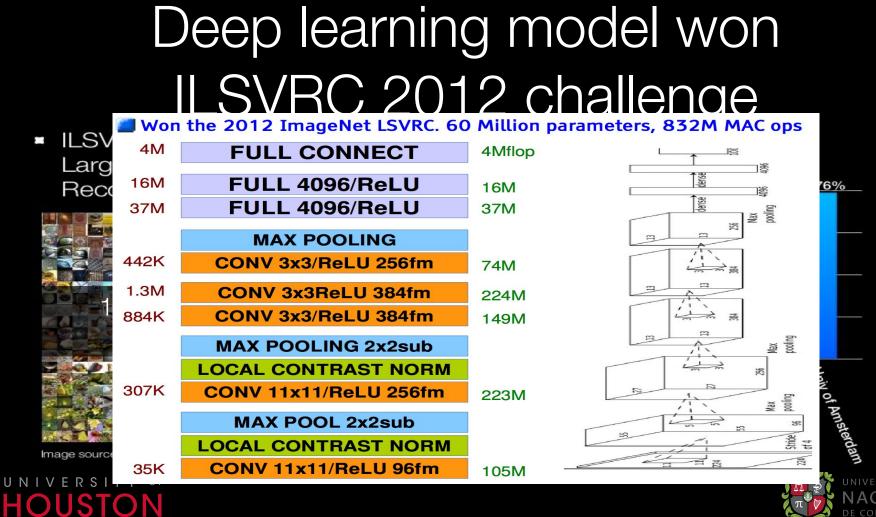
A Fast Learning Algori 1528

Geoffrey E. Hinton hinton@cs.toronto.edu Simon Osindero osindero@cs.toronto.edu Department of Computer Scien

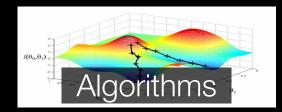
Yee-Whye Teh tehyw@comp.nus.edu.sg Department of Computer Scien 10 label unit This could be t top level of another sensor pathway

G. Hinton, S. Osindero, and Y.-W. Teh

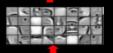
UNIVERSITY of HOUSTON



NACIONA de colombia



object models



object parts Feature

[Honglak

UNIV

pixels HOUSTON

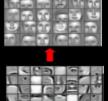
FULL CONNECT

4M

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4Mflop

Tricks **Neural Networks: Tricks of the Trade** Second Edition D Springer ONAL

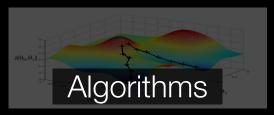


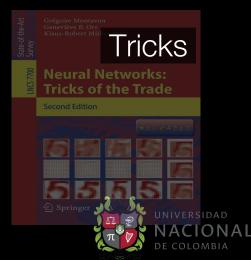
object models

[Honglak

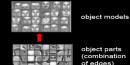
object parts Feature

UNIV



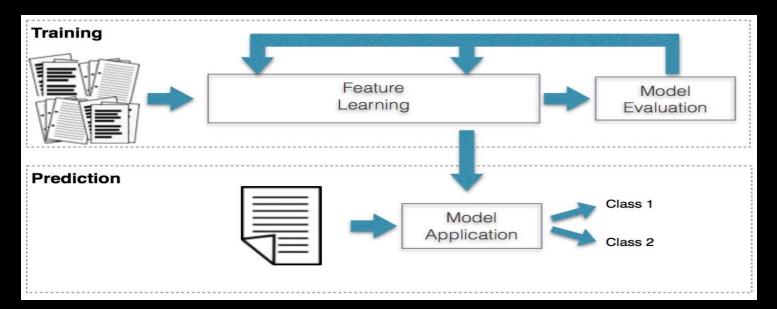


Feature learning



edges

[Honglak



UNIVERSITY of HOUSTON

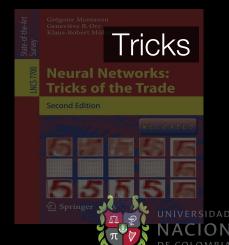
Data

Feature

learning

edaes

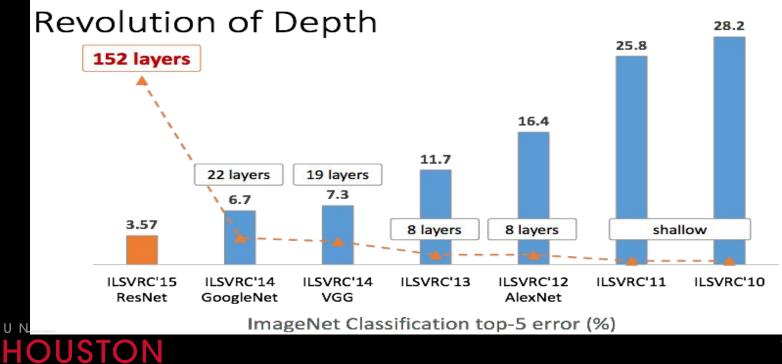




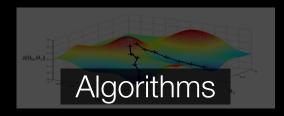
Honglak

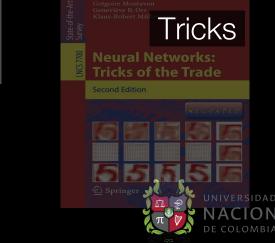
Deep -> Bigger

Microsoft Research



UN





Feature

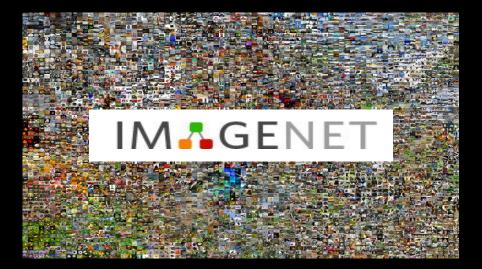
learning

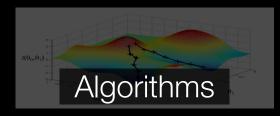
UNIVERSITY of HOUSTON

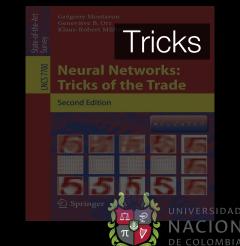
Data...

- Images annotated with WordNet concepts
- Concepts: 21,841
- Images: 14,197,122
- Bounding box annotations: 1,034,908
- Crowdsourcing

UNIVERSITY of HOUSTON







obiect parts

Feature learning

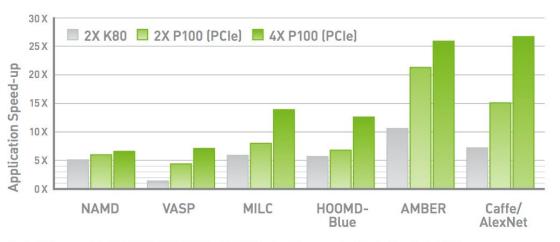
UNIVERS HOUSTON

HPC

SPECIFICATIONS

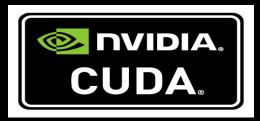
GPU Architecture	NVIDIA Pascal
NVIDIA CUDA® Cores	3584
Double-Precision Performance	4.7 TeraFLOPS
Single-Precision Performance	9.3 TeraFLOPS
Half-Precision Performance	18.7 TeraFLOPS
GPU Memory	16GB CoWoS HBM2 at 732 GB/s or
	12GB CoWoS HBM2 at 549 GB/s
System Interface	PCIe Gen3
Max Power Consumption	250 W
ECC	Yes
Thermal Solution	Passive
Form Factor	PCIe Full Height/Length

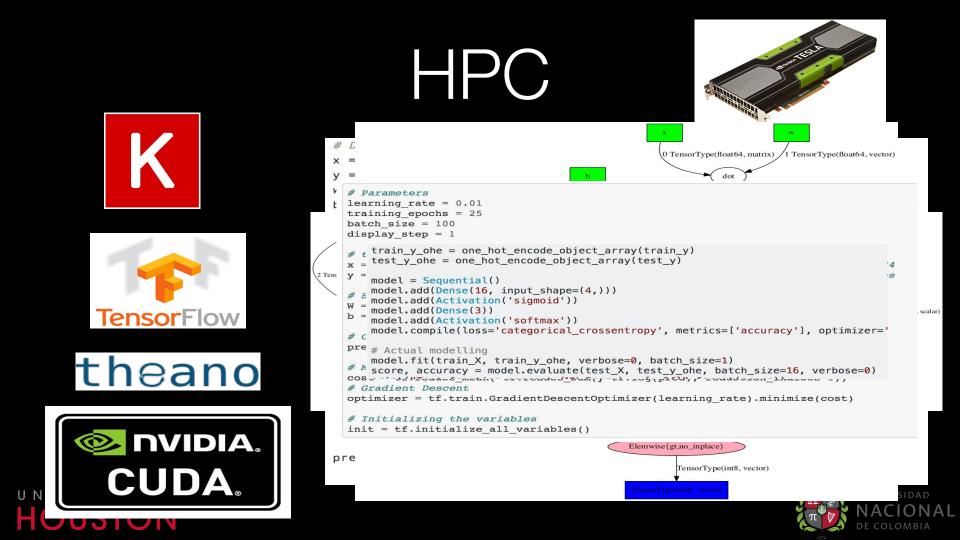
NVIDIA Tesla P100 for PCIe Performance

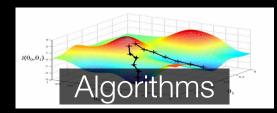


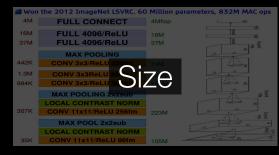
Dual CPU server, Intel E5-2698 v3 @ 2.3 GHz, 256 GB System Memory, Pre-Production Tesla P100

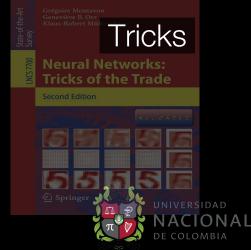
HPC











UNIVERSITY of

Algorithms

- Backpropagation
- Backpropagation through time
- Online learning (stochastic gradient descent)

• Softmax

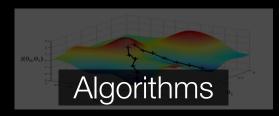
HOUSTON

01

Feature

learning

HOUSTON



Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops 4M FULL CONNECT 16M FULL 4096/ReLU 37M FULL 4096/ReLU 37M AX POOLING 442K CONV 3x3/ReLU 25/bm CONV 3x3/ReLU 25/bm 307K CONV 3x3/ReLU 25/bm LOCAL CONTRAST NORM 307K CONV 11x11/ReLU 25/bm 105M

[Hongla

Tricks

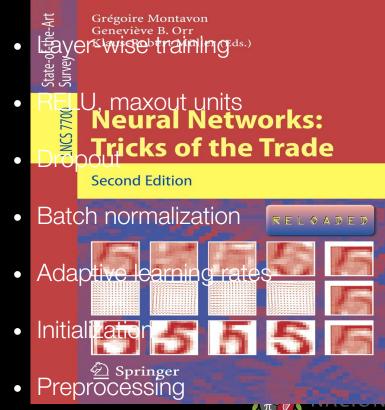
- DL is mainly an engineering problem
- DL networks are hard to train

ERSIT

HOUS

01

• Several tricks product of years of experience



DE COLOMBIA

Applications

- Computer vision:
 - Image: annotation, detection, segmentation, captioning
 - Video: object tracking, action recognition, segmentation
- Speech recognition and synthesis
- Text: language modeling, word/text representation, text classification, translation

• Biomedical image analysis

Natural Language Processing (NLP) A quick but not so dirty intro

NACIONAL de colombia

HOUSTON

What is NLP?

- ★ Automated processing of human language (computational linguistics)
- ★ Computer science subfield that draws on knowledge from AI and Linguistics
- ★ Ultimate goal: To design programs that can take as input human language (any modality and language) and perform a useful task.

Why NLP?

- " ... language is what made us human" (Guy Deutscher)
- ★ Through language humans:
 - Pass on knowledge
 - Create new thoughts and ideas
 - Express deep (and not so deep) reflections
- Practical value:
 - Companies want to know what consumers are saying
 - Intelligence communities want to know what persons of interest are planning
 - New products that use language as the interface with humans
- ★ Scientific value:

VERS

• Gain a deeper understanding of how the human brain is able to process language

Levels of Analysis

★ Speech

• Phonology

★ Text

IVERS

- Morphology: the structure of words
- Syntax: how these sequences are structured
- Semantics: meaning of the strings
- Pragmatics: discourse
- Interaction between levels

Some NLP applications

★ Speech recognition

- Voicemail transcription
- ★ Dialogue systems
 - Siri, Cortana

★ Information extraction

- Named Entity Recognition and Linking
- Event detection

★ Machine translation

- Text to text
- Speech to speech

UNIVERSITY of HOUSTON

Challenges in NLP

Main issue is ambiguity

Ambiguity in Speech

- ★ 264 Lane Street vs. 26 four-lane street
- \star For invoices vs foreign voices
- ★ Colorectal cancer risks vs co-director cancel risks
- ★ Frapuccino vs Fred Paccino

FD

Woof. woof! GRRRROWL Ruff! Woof WOO		
	woof! RROWL WOOF	

ride	rideable
do	doable
like	likeable

● Pattern: Verb + "able" → Adjective (able to do/be Verb-ed)

happy	unhappy
cool	uncool
stable	unstable

● Pattern: "un" + Adjective → Adjective (not Adjective)

do	undo
zip	unzip
dress	undress

● Pattern: "un" + Verb → Adjective (to reverse Verb-ing)

What about the word unlockable?

Image source: http://plywoodchair.com/wp-content/uploads/2015/03/Garage-Door-Lock-Mechanism-Mesmerizing-Door-Design-Ideas.jpg

Option 1:

"un" + lock (Verb) \rightarrow unlock (Verb) (to reverse locking)

unlock + "able" \rightarrow unlockabe (Adjective) (able to unlock)

Option 2:

lock + "able" \rightarrow lockable (Adjective) (able to lock)

"un" + lockable \rightarrow unlockable (Adjective) (not able to lock) UNIVERSITY of HOUSTON

Ambiguity in Syntax

UNIVERSITY of HOUSTON

Ambiguity in Syntax

- ★ Jake told Mike he has cancer
- ★ Eat spaghetti with meatballs vs eat spaghetti with chopsticks
- ★ We saw the Eiffel Tower flying to Paris
- ★ Old men and women

Interesting Advances in Deep Learning for NLP

Sentiment analysis:

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Poetry generation:

http://52.24.230.241/poem/

Interesting Advances in Deep Learning for NLP

★ Lowest reported WER in speech recognition (5.1)

IVERSI

 Neural network acoustic and language models Microsoft researchers achieve new conversational speech recognition milestone

August 20, 2017 | Posted by Microsoft Research Blog

By Xuedong Huang, Technical Fellow, Microsoft

Last year, Microsoft's speech and dialog research group announced a milestone in reaching human parity on the Switchboard conversational speech recognition task, meaning we had created technology that recognized words in a conversation as well as professional human transcribers.

After our transcription system reached the 5.9 percent word error rate that we had measured for humans, other researchers conducted their own study, employing a more involved multitranscriber process, which yielded a 5.1 human parity word error rate. This was consistent with prior research that showed that humans achieve higher levels of agreement on the

٩L

Interesting Advances in Deep Learning for NLP

★ Series of first places on different shared tasks:

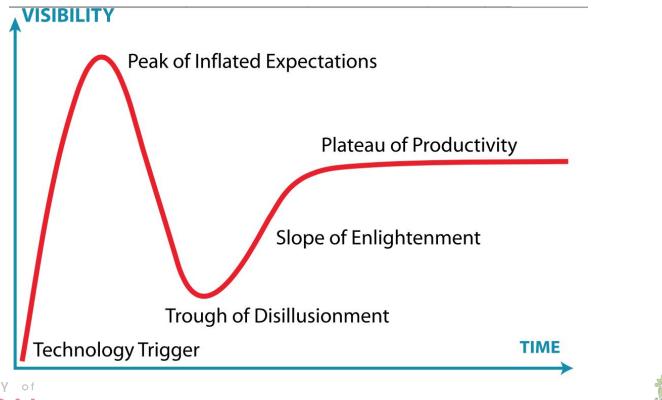
- Sentiment Analysis on Financial Data (SemEval-2017 Task 5)
- Novel and Emerging Named Entity Recognition (2017 WNUT at EMNLP'17)
- Sentiment Analysis on Twitter (SemEval-2017 Task 4)

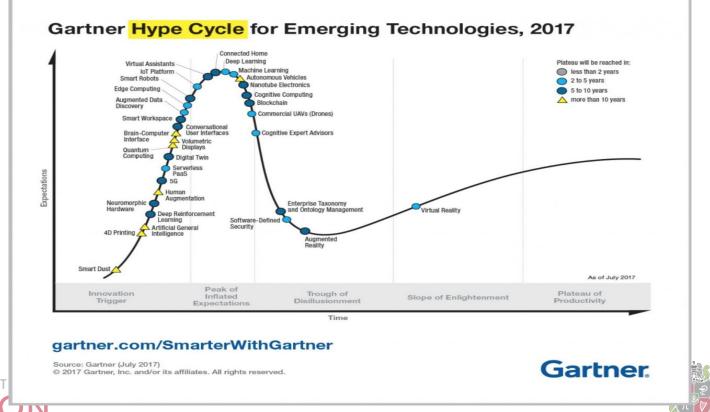
Deep Learning Hype

- ★ Most papers in NLP related conferences use DL
- ★ Plenty of job opportunities:
 - <u>http://deeplearning.net/deep-learning-job-listings/</u>
 - Linkedin shows > 2,500 matches

Technology Hype

VERSI





UNIVERSIDAD NACIONAL DE COLOMBIA

HOUST

Cautionary Tale

- ★ Misinformed predictions about DL
- ★ Interpretability
- ★ Domain knowledge:
 - An Adversarial Review of "Adversarial Generation of Natural Language"
 - The paper oversells what they accomplish
 - \blacksquare Lack of understanding of the domain \rightarrow failure to devise proper evaluation
 - Sexy models should not be the goal
 - Review process is "damaged" by loss of anonymity in arxiv

Course Administrivia

Course Info

IVERS

- ★ Website: <u>https://fagonzalezo.github.io/dl-tau-2017-2/</u>
- ★ Structure and Grading
 - 3 assignments: 45% (15% each)
 - One mid term exam: 20%
 - Paper presentation: 10 %
 - End of semester project: 25% (includes final report and poster)

Assignments

- ★ Assignment 0 is a warm up exercise
- ★ Assignment 1 (NN basics, word embeddings and text classification)
- ★ Assignment 2 (language modeling and generation)
- ★ Assignment 3 (semantic similarity)

Note that assignments up to 1 day late will receive up to 80% of the credit, and 0 credit after 1 day late.

Paper Presentations

Choose a paper to present to the class in <10 minutes. The list of possible papers to choose from will be posted in the course website.

Each student will need to present one paper.

Final Project

- ★ Individual Projects on a research topic chosen in discussion with the instructors.
- ★ Students need to submit a proposal due Nov. 10th. Final project poster presentations, report and github repository are Dec. 11th.

