Machine Learning Review Neural Network Training

COSC 7336: Advanced Natural Language Processing Fall 2017

Some content in these slides has been adapted from Jurafsky & Martin 3rd edition, and lecture slides from Rada Mihalcea, Ray Mooney and the deep learning course by Manning and Socher.

Today's Lecture

- ★ Machine learning review
 - The learning problem
 - Learning and optimization
 - Generalization
- ★ Neural network training

VFRS

- Perceptron training
- Backpropagation
- In-class assignment

What is machine learning?

- ★ Artificial intelligence
- ★ Pattern recognition
- ★ Computational learning theory
- ★ Data mining, predictive analytics, data science
- ★ Statistics, statistical learning

What is a pattern?

- ★ Data regularities
- ★ Data relationships
- ★ Redundancy

FR

★ Generative model

Learning a boolean function

x_1	x_2	f_1	f_2	 f_{16}
0	0	0	0	 1
0	1	0	0	 1
1	0	0	0	 1
1	1	0	1	 1

How many Boolean functions of n variables are?

How many candidate functions are removed by a sample?

Is it possible to generalize from examples?

Inductive bias

- ★ In general, the learning problem is ill-posed (more than one possible solution for the same particular problem, solutions are sensitive to small changes on the problem)
- ★ It is necessary to make additional assumptions about the kind of pattern we want to learn
- ★ Hypothesis space: set of valid patterns that can be learnt by the algorithm

What is a good pattern?

UNIVERSITY of HOUSTON

What is a good pattern?

UN

н

IVERSITY of

OUSTON

Generalization

VFRS

- ★ The loss function measures the error in the training set
- ★ Is this a good measure of the quality of the solution?

Over-fitting and under-fitting

IVERSIT

OUSTON

01

U N

н

Generalization error

★ Generalization error:

$$E[(L(f_w, D)]]$$

- \star How to control the generalization error during training?
 - Cross validation
 - Regularization

VERS

Types of learning problems

- ★ Supervised learning
- ★ Non-supervised learning
- ★ Semi-supervised learning
- ★ Active/reinforcement learning

Methods

- ★ There are many!
- ★ Depend on the problem to solve and underline strategy
- ★ Trends change through time.
- ★ Now:
 - NNs
 - SVMs
- Used to be the other way around

DE COLOMBIA

Perceptron Training Demo

UNIVERSITY of HOUSTON

Neural Network Training

Training multilayer networks

- ★ We will use gradient descent as well.
- ★ We need to calculate ∂E_{ℓ}

 $\frac{\partial E_{\ell}}{\partial w_{ji}}$

- ★ An analytical solution gets very complicated even for a small NN
- ★ Backpropagation is an efficient strategy for gradient calculation

Rumelhart, D.; Hinton, G.; Williams, R. (1986). "Learning representations by back-propagating errors". *Nature*. **323** (6088): 533–536.

Gradient calculation

- ★ General case for a neuron z_j and z_i in layers n and n-1 respectively
- ★ We want to calculate the gradient: ∂E_{ℓ}

∂w_{ji}

★ General strategy: re-express the gradient as a function of two values

$$\frac{\partial E_\ell}{\partial w_{ji}} = \delta_j z_i$$

UNIVERSITY of HOUSTON

NAL

DE COLOMBIA

HOUSTON

Generalized (multidimensional) chain rule (GCR)

$$y = f(u_1, \ldots, u_m)$$

$$\mathbf{u} = g(x_1, \ldots, x_n)$$

$$\frac{\partial y}{\partial x_i} = \sum_{\ell=1}^m \frac{\partial y}{\partial u_\ell} \frac{\partial u_l}{\partial x_i}$$

UNIVERSITY of HOUSTON

 δ_j recursive calculation

$$egin{aligned} \delta_j &= rac{\partial E_\ell}{\partial a_j} = \sum_{k=1}^m rac{\partial E_\ell}{\partial a_k} rac{\partial a_k}{\partial a_j} \ &= \sum_{k=1}^m \delta_k rac{\partial a_k}{\partial a_j} \ &= \sum_{k=1}^m \delta_k rac{\partial a_k}{\partial z_j} rac{\partial z_j}{\partial a_j} \ &= \sum_{k=1}^m \delta_k w_{kj} h'(a_j) \ &= h'(a_j) \sum_{k=1}^m \delta_k w_{kj} \end{aligned}$$

Applying GCR since

$$E_{\ell} = f(a_1, \ldots, a_k)$$

Definition of δ_j

Chain rule

δ_j backpropagation

Deltas in layer *n* are calculated from deltas in layer n + 1:

Backpropagation algorithm

INIVERS

OUS

1: Initialize w 2: for n = 1 to num epochs for all $x^{\ell} \in D$ 3: Forward propagate x^{ℓ} through the network 4: to calculate the a_i and z_j values Calculate $\delta_o = \frac{\partial E_\ell}{\partial a_e}$ 5: for all the output neurons 6: Backward propagate δ_i values $\delta_i = h'(a_i) \sum_{k=1}^m \delta_k w_{ki}$ for all $w_{ii} \in \mathbf{w}$ 7: $\Delta w_{ji} \leftarrow \delta_j z_i$ 8: $w_{ji} \leftarrow w_{ji} - \eta_n \Delta w_{ji}$ 9:

Two layers NN with sigmoid activation

$$a_{j} = \sum_{i} w_{ji} x_{i}$$
$$z_{j} = \sigma(a_{j})$$
$$a_{y} = \sum_{j} v_{j} z_{j}$$
$$y = \sigma(a_{y})$$

