
Deep Learning Frameworks
COSC 7336: Advanced Natural Language Processing

Fall 2017

Today’s lecture
★ Deep learning software overview
★ TensorFlow
★ Keras
★ Practical

Graphical Processing Unit (GPU)
★ From graphical computing to general

numerical processing GPGPU
★ Single Instruction Multiple Data

architecture
★ High-throughput type computations

with data-parallelism
★ Commodity hardware
★ Two main vendors: NVidia, AMD

Performance evolution

NVIDIA Tesla

GPU vs CPU for
deep learning

Programming GPUs
★ CUDA:

○ NVidia’s parallel computing platform
○ Access to the GPU's virtual instruction for the execution of compute kernels on the parallel

computational elements.
○ CUDA C: a specialized version of C (also CUDA Fortran)
○ Optimized libraries

★ OpenCL:
○ Similar to CUDA but multiplatform no vendor dependant.
○ The way to go with AMD GPU cards.
○ A step behind CUDA

Deep learning frameworks

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Overview
★ Numerical computation based on dataflow graphs
★ Developed in C++
★ Python and C++ frontends
★ Automatic differentiation
★ Easy visualization using TensorBoard
★ Abstraction layers

○ Tf.contrib.learn, tf.contrib.slim
○ TFLearn, Keras

★ Support of heterogeneous architectures: multi-CPU, GPU, multi-GPU,
distributed, mobile

Computation graphs (CG)

x

*

a

* *

b

c
+

+
★ A CG defines the operations that have to

be performed over a set of constants and
variables.

★ TF works over CG where the variables are
usually tensors (scalars, vectors, matrices,
multidimensional matrices).

★ In TF the CG is first created and then it
can be executed.

★ CG can be symbolically manipulated: e.g.
to calculate its gradient or to simplify it.

ax2 + bx + c

Creating a graph in TF

x

*

a

* *

b

c
+

+

Executing a graph
★ Executing a graph requires to create

session.
★ A Session object encapsulates the

environment in which Operation objects
are executed, and Tensor objects are
evaluated.

★ Sessions have to be closed so that
assigned resources are released

Tensors
★ In general, a tensor is a multidimensional

array:
○ Vector: one dimensional tensor.
○ Matrix: two dimensional tensor.

★ In TF, a tensor is a symbolic handle to one
of the outputs of an operation.

★ It does not hold the values of that
operation's output, but instead provides a
means of computing those values in a
session.

★ The two main attributes of a tensor are its
data type and its shape.

Variables and
placeholders
★ A variable maintains state in the

graph across calls to run()
★ The Variable() constructor

requires an initial value for the
variable, which can be a Tensor
of any type and shape.

★ The initial value defines the type
and shape of the variable.

★ Placeholders allow to input values
to the graph.

★ Placeholder values value must be
fed using the feed_dict optional
argument to Session.run().

Optimization
★ TF can automatically calculate gradients of

a graph.
★ You can use the gradients to implement

your own optimization strategy,
★ or you can use optimization methods

already implemented in the system.
★ Parameters to optimize must be declared

as variables.
★ When an optimizer instance is created, it

receives parameters such as the learning
rate.

★ Optimizer must called with the objective
function.

★ Variables must be initialized.

Optimization CG

Optimization CG

Optimizers
★ tf.train.GradientDescentOptimizer

★ tf.train.AdadeltaOptimizer
★ tf.train.AdagradOptimizer
★ tf.train.MomentumOptimizer
★ tf.train.AdamOptimizer
★ tf.train.FtrlOptimizer
★ tf.train.ProximalGradientDescentOptimizer
★ tf.train.ProximalAdagradOptimizer
★ tf.train.RMSPropOptimizer

Monitoring with
TensorBoard
★ TensorBoard is a

visualization application
provided by TensorFlow.

★ It visualizes summary data
which is written to log files
during training.

★ It also visualizes the
computing graph as well as
complementary information
such as images.

Devices
★ TF supports different

target devices: CPU,
GPU, multi GPU

★ A graph me be
distributed among
different devices

★ TF take care of
consolidating the
data

Additional topics
★ Estimators: a high-level TF API that greatly simplifies machine learning

programming. Encapsulates main ML tasks: training, evaluation, prediction.
★ Saving and loading models: TF provides different tools to persists trained

models.
★ Dataset API: makes it easy to deal with large amounts of data, different data

formats, and complicated transformations.
★ tf.layers: provides a high-level API that makes it easy to construct a

neural network. It provides methods that facilitate the creation of dense (fully
connected) layers and convolutional layers.

★ tf.nn: Neural network support.
★ tf.contrib: contains volatile or experimental code.

○

TensorFlow Demo

Keras
★ Developed by François Chollet
★ High-level Python framework able to run on top of TensorFlow, Theano or

CNTK,
★ Guiding principles:

○ User firnedliness
○ Modularity
○ Easy extensibility
○ Work with Python

★ Highly popular
★ Fast prototyping
★ Easy to extend
★ Many pretrained models

Sequential
model
★ The simplest model is

sequential
★ Layers are stacked one above

the other
★ The learning process is

configured with compile
★ Training is performed with one

line.
★ The trained model can be easily

evaluated
★ And applied to new data

The functional API
★ The sequential model is easy to use, but someway restricted.
★ The functional API gives more flexibility that allows to construct more complex

models:
○ Multiple outputs (multi-task)
○ Multi inputs
○ Shared layers

Layers
★ Layers are the building blocks of models
★ Keras provides several predefined layers for building different types of

networks
★ Layers have different methods that allow to get and set their weights, to

define an initialization function, to control the regularization, the activation
function etc.

Preprocessing
★ Sequences:

○ Pad_sequences
○ Skip-grams

★ Text
○ Text to word sequence
○ One hot
○ Hashing
○ Tokenizer

★ Images
○ Normalization
○ Data augmentation

Keras Demo

