Deep Learning for Biomedical Image Analysis

Fabio A. González Univ. Nacional de Colombia

machine learning perception and discovery

Medical Images

.....

Universidad Nacional de Colombia

Fabio A. González

In the news...

Deep learning technology can save lives by helping detect curable diseases early

Up to Speed on Deep Learning in Medical Imaging

By Isaac Madan and David Dindi

Deep Learning in Healthcare: Challenges and Opportunities

(C) enlitic

In the news...

© enlitic

Deep learning technology can save

lives by helping detect curable

Deep Learning in Medical Imaging: The Not-so-near Future

Blog | March 11, 2016 | PACS and Informatics By Nadim Michel Daher

Medical Imaging

By Isaac Madan and David Dindi

Deep Learning in Healthcare: Challenges and Opportunities

Natural image analysis:
Medical image analysis:

- Natural image analysis:
 - Huge volumes available

- Medical image analysis:
 - Huge volumes available

- Natural image analysis:
 - Huge volumes available
 - Humans have a natural ability to understand them

- Medical image analysis:
 - Huge volumes available
 - Understanding require complex training

- Natural image analysis:
 - Huge volumes available
 - Humans have a natural ability to understand them
 - Cheap annotation

- Medical image analysis:
 - Huge volumes available
 - Understanding require complex training
 - Expensive annotation

- Natural image analysis:
 - Huge volumes available
 - Humans have a natural ability to understand them
 - Cheap annotation
 - Effectivity more important than interpretability

- Medical image analysis:
 - Huge volumes available
 - Understanding require complex training
 - Expensive annotation
 - Interpretability more important than effectivity

- Natural image analysis:
 - Huge volumes available
 - Humans have a natural ability to understand them
 - Cheap annotation
 - Effectivity more important than interpretability
 - Typical resolution 12MP, but lower resolutions enough for analysis.

- Medical image analysis:
 - Huge volumes available
 - Understanding require complex training
 - Expensive annotation
 - Interpretability more important than effectivity
 - Large resolution/size images (10⁴ MP, 4D, etc)

Challenges

- Interpretability
- Involving domain knowledge
- Large sizes/resolutions
- Expensive annotations

Interpretability

Fabio A. González

Basal cell carcinoma

- BCC is the most common skin cancer.
- Diagnosis is performed by visual inspection of a histopathology slide from a biopsy sample.
- Prognostic is excellent, as long as the appropriate treatment is used in early diagnosis.

Visual variability

Fabio A. González

Image analysis framework

Fabio A. González

Feature learning

Fabio A. González

Learning strategies

Fabio A. González

RICA features

Fabio A. González

TICA features

Fabio A. González

Topographic representation

Fabio A. González

Invariant features

Fabio A. González

Unsupervised discrimination

Fabio A. González

Classification

Fabio A. González

Classification results

Representation	Accuracy	F-Score	BAC
TICA combined layers	0.944 +/- 0.025	0.925 +/- 0.031	0.941 +/- 0.027
RICA combined layers	0.935 +/- 0.025	0.912 +/- 0.026	0.931 +/- 0.023
AE combined layers	0.933 +/- 0.026	0.908 +/- 0.029	0.926 +/- 0.025
TICA Second layer	0.937 +/- 0.015	0.913 +/- 0.020	0.931 +/- 0.017
AE Second layer	0.916 +/- 0.034	0.886 +/- 0.039	0.907 +/- 0.031
TICA First Layer	0.936 +/- 0.022	0.914 +/- 0.027	0.933 +/- 0.020
RICA First Layer	0.926 +/- 0.029	0.899 +/- 0.033	0.920 +/- 0.032
AE First Layer	0.925 +/- 0.027	0.899 +/- 0.027	0.917 +/- 0.024
(BOF) ColorDCT-400	0.891 +/- 0.023	0.851 +/- 0.027	0.883 +/- 0.024
(BOF) Haar-400	0.796 +/- 0.026	0.708 +/- 0.031	0.772 +/- 0.026

Digital staining

Fabio A. González

Digital staining

Non-cancer

Non-cancer

0.672

0.083

0.147

0.460

Fabio A. González

A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection

Angel Alfonso Cruz-Roa¹, John Edison Arevalo Ovalle¹, Anant Madabhushi², and Fabio Augusto González Osorio¹

¹ MindLab Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
² Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA

journal homepage: www.elsevier.com/locate/aiim

An unsupervised feature learning framework for basal cell carcinoma image analysis

John Arevalo^a, Angel Cruz-Roa^a, Viviana Arias^b, Eduardo Romero^c, Fabio A. González^{a,*}

^a Machine Learning, Perception and Discovery Lab, Systems and Computer Engineering Department, Universidad Nacional de Colombia, Faculty of Engineering, Cra 30 No 45 03-Ciudad Universitaria, Building 453 Office 114, Bogotá DC, Colombia

^b Pathology Department, Universidad Nacional de Colombia, Faculty of Medicine, Cra 30 No 45 03-Ciudad Universitaria, Bogotá DC, Colombia ^c Computer Imaging & Medical Applications Laboratory, Universidad Nacional de Colombia, Faculty of Medicine, Cra 30 No 45 03-Ciudad Universitaria, Bogotá DC, Colombia

Involving Domain Knowledge

Fabio A. González

Handcrafted/learned feature fusion

Cascaded Ensemble of Convolutional Neural Networks and Handcrafted Features for Mitosis Detection

Haibo Wang **, Angel Cruz-Roa*², Ajay Basavanhally¹, Hannah Gilmore¹, Natalie Shih³, Mike Feldman³, John Tomaszewski⁴, Fabio Gonzalez², and Anant Madabhushi¹

¹Case Western Reserve University, USA
²Universidad Nacional de Colombia, Colombia
³University of Pennsylvania, USA
⁴University at Buffalo School of Medicine and Biomedical Sciences, USA

Fabio A. González

Handcrafted/learned feature fusion

Fabio A. González

SPIE

Handcrafted/learned feature fusion

Fabio A. González

SPIE

Handcrafted/learned feature fusion

Handcrafted/learned feature fusion

Combining Unsupervised Feature Learning and Riesz Wavelets for Histopathology Image Representation: Application to Identifying Anaplastic Medulloblastoma

Sebastian Otálora¹, Angel Cruz-Roa¹, John Arevalo¹, Manfredo Atzori², Anant Madabhushi³, Alexander R. Judkins⁴, Fabio González¹, Henning Müller², and Adrien Depeursinge^{2,5}

¹ Universidad Nacional de Colombia, Bogotá, Colombia
² University of Applied Sciences Western Switzerland (HES-SO)
³ Construction Description (HES-SO)

³ Case Western Reserve University, Cleveland, OH, USA

⁴ St. Jude Childrens Research Hospital from Memphis, TN, USA

⁵ Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Handcrafted/learned feature fusion

Handcrafted/learned feature fusion

Method	Accuracy	Sensitivity	Specificity
$TICA + \text{Riesz}[N_3^1, N_2^2, N_1^2]$	0.997 +/- 0.002	0.995 +/- 0.004	1 +/- 0
TICA[9]	0.972 + / - 0.018	0.977 + - 0.021	0.967 + - 0.031
Riesz $[N_3^1, N_2^2, N_1^2]$	0.964 + / - 0.038	0.999 + - 0.001	0.932 + / - 0.07
Riesz $[N_3^1]$	0.958 + / - 0.062	0.963 + / - 0.05	0.916 + - 0.125
Riesz $[N_2^2]$	0.94 + / - 0.02	0.94 + - 0.02	0.3 + - 0.04
CNN[9]	0.90 + / - 0.1	0.89 + - 0.18	0.9 + / - 0.0.3
sAE[9]	0.90	0.87	0.93
BOF + A2NMF (Haar) [10]	0.87	0.86	0.87
Riesz $[N_1^2]$	0.85 + / - 0.23	0.9 + - 0.15	0.7 + - 0.47
BOF + K - NN (Haar) [2]	0.80	-	_
BOF + K - NN (MR8)[2]	0.62	-	-

P(anap) = 0,734 P(anap) = 0,693

Fabio A. González

Efficient Analysis of Large Resolution Images

Fabio A. González

Fabio A. González

Fabio A. González

Universidad Nacional de Colombia

sampling	gradient
interpolation	prediction

Fabio A. González

Universidad Nacional de Colombia

et

Expensive Annotations

Fabio A. González

Active learning

Query Selection Strategy

Universidad Nacional de Colombia

Fabio A. González

Query Selection Strategy

- Uncertainty sampling
- Query by committee
- Expected model change
- Expected error reduction
- Variance reduction

Fabio A. González

Exudate detection in eye fondus images with CNNs

Fabio A. González

Exudate detection in eye fondus images with CNNs

Fabio A. González

Exudate detection in eye fondus images with CNNs

Fabio A. González

How to apply active learning?

- Which active learning strategy? It must be efficient and compatible with CNN training.
- Patch level classification model.
- Image level annotation.

Fabio A. González

Expected gradient length

$$\theta = \theta - \eta \nabla J_i(\theta)$$

Fabio A. González

Expected gradient length

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \boldsymbol{\eta} \nabla J_i(\boldsymbol{\theta})$$

$$\Phi(x^i) = \sum_{j=1}^c p(y^i = j | x^i) \| \nabla J_i(\theta) \|$$

Fabio A. González

EGL at patch level

Algorithm 1 EGL for Active Selection of patches in a Convolutional Neural Network

Require: Patches Dataset \mathscr{L} , Initial Trained Model **M**, Number *k* of most informative patches

- 1: while not converged do
- 2: Create and shuffle batches from \mathscr{L}
- 3: **for** each batch **do**
- 4: Compute $\Phi(x)$ using $\mathbf{M}, \forall x \in \text{batch}$
- 5: end for
- 6: Sort all the Φ Values and return the higher k corresponding samples \mathscr{L}_k
- 7: Update **M** using $\mathscr{L}' \cup \mathscr{L}_k$
- 8: end while

Fabio A. González

Patch-level results (EGL vs random selection)

Fabio A. González

EGL at image level

Algorithm 2 EGL for Active Selection of images in a Convolutional Neural Network

- **Require:** Training Images Set \mathscr{T} , Patches Dataset \mathscr{L} , Number μ of initial images to look Select an initial set \mathscr{T}_{μ} of images randomly
- 2: Train Initial Model M using the ground truth patches from the μ images while not converged **do**
- 4: **for** each image in $\mathscr{T} \setminus \mathscr{T}_{\mu}$ **do** Patchify image and compute $\sigma_{image} = \sum_{patch \in image} \Phi(patch)$, using **M**
- 6: end for

Sort all the σ_{image} values and return \mathscr{I}_{max} , the image with higher sum

- 8: $\mathscr{T}_{\mu} = \mathscr{T}_{\mu} \cup \mathscr{I}_{max}$ $\mathscr{L}_{\mu} = \{ \text{ patch} \in \mathscr{L}_{\mathscr{I}}, \forall \mathscr{I} \in \mathscr{T}_{\mu} \}$
- 10: Update **M** with *k* selected patches using Algorithm 1 and the patches in \mathscr{L}_{μ} end while

Image-level results (EGL vs random selection)

Fabio A. González

Prediction through time

Fabio A. González

Current model prediction

Fabio A. González

The Team

Fabio A. González

The Team

Alexis Carrillo Andrés Esteban Paez Angel Cruz Andrés Castillo Andrés Jaque Andrés Rosso Camilo Pino Claudia Becerra Fabián Paez Felipe Baquero Fredy Díaz Gustavo Bula Germán Sosa Hugo Castellanos Ingrid Suárez John Arévalo lorge Vanegas Jorge Camargo

Jorge Mario Carrasco Joseph Alejandro Gallego José David Bermeo Juan Carlos Caicedo Juan Sebastián Otálora Katherine Rozo Lady Viviana Beltrán Lina Rosales Luis Alejandro Riveros Miguel Chitiva Óscar Paruma Óscar Perdomo Raúl Ramos Roger Guzmán Santiago Pérez Sergio Jiménez Susana Sánchez Sebastián Sierra

Fabio A. González

Gracias! fagonzalezo@unal.edu.co http://mindlaboratory.org

berception and discovery perception and discovery