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Medical Images ≠ 
Natural Images

• Natural image analysis:

• Huge volumes available 

• Humans have a natural 
ability to understand them 

• Cheap annotation 

• Effectivity more important 
than interpretability 

• Typical resolution 12MP, but 
lower resolutions enough for 
analysis. 

• Medical image analysis:

• Huge volumes available 

• Understanding require 
complex training  

• Expensive annotation 

• Interpretability more 
important than effectivity 

• Large resolution/size images 
(104 MP, 4D, etc)
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Challenges

• Interpretability 

• Involving domain knowledge  

• Large sizes/resolutions 

• Expensive annotations
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Basal cell carcinoma
• BCC is the most common skin 

cancer. 

• Diagnosis is performed by 
visual inspection of a 
histopathology slide from a 
biopsy sample. 

• Prognostic is excellent, as 
long as the appropriate 
treatment is used in early 
diagnosis.
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Feature learning
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Objective:  The  paper  addresses  the  problem  of  automatic  detection  of basal cell carcinoma  (BCC)  in
histopathology  images.  In particular,  it  proposes  a framework  to both,  learn  the image  representation  in
an unsupervised  way and  visualize  discriminative  features  supported  by  the  learned  model.
Materials  and methods:  This  paper  presents  an  integrated  unsupervised  feature  learning  (UFL)  framework
for  histopathology  image  analysis  that comprises  three  main  stages:  (1) local  (patch)  representation
learning  using  different  strategies  (sparse  autoencoders,  reconstruct  independent  component  analy-
sis  and  topographic  independent  component  analysis  (TICA),  (2)  global  (image)  representation  learning
using  a  bag-of-features  representation  or  a  convolutional  neural  network,  and (3) a  visual interpretation
layer  to highlight  the  most  discriminant  regions  detected  by  the  model.  The integrated  unsupervised
feature  learning  framework  was  exhaustively  evaluated  in  a histopathology  image dataset  for BCC  diag-
nosis.
Results: The  experimental  evaluation  produced  a classification  performance  of  98.1%,  in  terms  of the
area  under  receiver-operating-characteristic  curve,  for  the  proposed  framework  outperforming  by  7%
the state-of-the-art  discrete  cosine  transform  patch-based  representation.
Conclusions:  The proposed  UFL-representation-based  approach  outperforms  state-of-the-art  methods  for
BCC  detection.  Thanks  to its visual  interpretation  layer,  the  method  is  able  to  highlight  discriminative
tissue  regions  providing  a better  diagnosis  support.  Among  the  different  UFL  strategies  tested,  TICA-
learned  features  exhibited  the  best  performance  thanks  to  its  ability  to  capture  low-level  invariances,
which  are inherent  to the  nature  of the  problem.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Digital pathology refers to the set of computational methods and
technologies that support the different pathology workflow stages,
including digital slide acquisition, computer aided diagnosis, prog-
nosis and theragnosis [1]. The importance and popularity of digital
pathology have rapidly grown during the last years thanks of the
emergence of fast, cost-effective whole slide image acquisition sys-
tems. An important component of digital pathology is automatic
image analysis, which is fundamental for tasks such as automatic

∗ Corresponding author. Tel.: +57 1 3165322; fax: +57 1 3165491.
E-mail addresses: jearevaloo@unal.edu.co (J. Arevalo), aacruzr@unal.edu.co

(A. Cruz-Roa), vlariasp@unal.edu.co (V. Arias), edromero@unal.edu.co (E. Romero),
fagonzalezo@unal.edu.co (F.A. González).

tumor detection and grading [2]. Automatic image analysis encom-
passes different kinds of computer vision and pattern recognition
problems associated with the detection, segmentation and classifi-
cation of biological structures (pathological and non-pathological).

The success of any histopathology image analysis method
depends on how well it captures morphological and architec-
tural characteristics from nuclei, cells, glands, organs and tissues.
In turn this depends on how well the method characterizes the
visual content of the histopathology image. This characterization
is accomplished by a feature extraction process which typically
uses canonical (e.g. wavelet transforms) or hand-engineered fea-
tures (e.g. SIFT). Different visual features have been proposed and
extensively evaluated in different histopathology image analy-
sis problems: (1) object level features to characterize biological
structures, e.g. size and shape, radiometric and densitometric, tex-
ture, chromatin-specific; (2) spatially related features to represent

http://dx.doi.org/10.1016/j.artmed.2015.04.004
0933-3657/© 2015 Elsevier B.V. All rights reserved.

A Deep Learning Architecture for Image
Representation, Visual Interpretability and Automated

Basal-Cell Carcinoma Cancer Detection
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Abstract. This paper presents and evaluates a deep learning architecture for
automated basal cell carcinoma cancer detection that integrates (1) image repre-
sentation learning, (2) image classification and (3) result interpretability. A novel
characteristic of this approach is that it extends the deep learning architecture
to also include an interpretable layer that highlights the visual patterns that con-
tribute to discriminate between cancerous and normal tissues patterns, working
akin to a digital staining which spotlights image regions important for diagnos-
tic decisions. Experimental evaluation was performed on set of 1,417 images
from 308 regions of interest of skin histopathology slides, where the presence
of absence of basal cell carcinoma needs to be determined. Different image rep-
resentation strategies, including bag of features (BOF), canonical (discrete cosine
transform (DCT) and Haar-based wavelet transform (Haar)) and proposed learned-
from-data representations, were evaluated for comparison. Experimental results
show that the representation learned from a large histology image data set has the
best overall performance (89.4% in F-measure and 91.4% in balanced accuracy),
which represents an improvement of around 7% over canonical representations
and 3% over the best equivalent BOF representation.

1 Introduction

This paper presents a unified method for histopathology image representation learning,
visual analysis interpretation, and automatic classification of skin histopathology im-
ages as either having basal cell carcinoma or not. The novel approach is inspired by
ideas from image feature representation learning and deep learning [10] and yields a
deep learning architecture that combines an autoencoder learning layer, a convolutional
layer, and a softmax classifier for cancer detection and visual analysis interpretation.

Deep learning (DL) architectures are formed by the composition of multiple linear
and non-linear transformations of the data, with the goal of yielding more abstract – and
ultimately more useful – representations [10]. These methods have recently become
popular since they have shown outstanding performance in different computer vision
and pattern recognition tasks [2,8,10]. DL architectures are an evolution of multilayer
neural networks (NN), involving different design and training strategies to make them
competitive. These strategies include spatial invariance, hierarchical feature learning

K. Mori et al. (Eds.): MICCAI 2013, Part II, LNCS 8150, pp. 403–410, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013
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ABSTRACT
Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key
component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e.
undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at
multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The
development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded
by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture
certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks
(CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models
tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the
handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled
training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are
largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of
feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature
extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently
combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN
model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted
features and CNN-derived features enables the possibility of maximizing performance by leveraging the disconnected
feature sets. Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 High Power Fields
(HPF, x400 magnification) by several pathologists and 15 testing HPFs yielded an F-measure of 0.7345. Apart from
this being the second best performance ever recorded for this MITOS dataset, our approach is faster and requires fewer
computing resources compared to extant methods, making this feasible for clinical use.

1. INTRODUCTION
Bloom Richardson grading,1 the most commonly used system for histopathologic diagnosis of invasive breast cancers
(BCa),2 comprises three main components: tubule formation, nuclear pleomorphism, and mitotic count. Mitotic count,
which refers to the number of dividing cells (i.e. mitoses) visible in hematoxylin and eosin (H & E) stained histopathology,
is widely acknowledged as a good predictor of tumor aggressiveness.3 In clinical practice, pathologists define mitotic
count as the number of mitotic nuclei identified visually in a fixed number of high power fields (400x magnification).
However, the manual identification of mitotic nuclei often suffers from poor inter-rater agreement due to the highly variable
texture and morphology between mitoses. Additionally this is a very laborious and time consuming process involving
the pathologist manually looking at and counting mitoses from multiple high power view fields on a glass slide under a
microscope. Computerized detection of mitotic nuclei will lead to increased accuracy and consistency while simultaneously
reducing the time and cost needed for BCa diagnosis.?

The detection of mitotic nuclei in H & E stained histopathology is a difficult task for several reasons.3 First, mitosis
is a complex biological process during which the cell nucleus undergoes various morphological transformations. This

⇤* indicates equal contributions

Medical Imaging 2014: Digital Pathology, edited by Metin N. Gurcan, Anant Madabhushi,
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contribute to the loss of these mitotic figures. Figure 4 shows a mitosis detection example using CNN and HC+CNN,
respectively, revealing the improvement obtained by integrating handcrafted features and CNN in HC+CNN.

The two 11-layers neural networks used by IDSIA13 requires roughly 30 epochs, which takes two days for training with
GPU optimization. Our 3-layer CNN needs less than 10 epochs, and requires only 11.4 hours using 9 epochs without GPU
optimization. Including the time needed to extract handcrafted features (6.5 hours in pure MATLAB implementation), the
training stage for HC+CNN was completed in less than 18 hours.

Dataset Method TP FP FN Precision Recall F-measure

Scanner
Aperio

HC+CNN 65 12 35 0.84 0.65 0.7345
HC 64 22 36 0.74 0.64 0.6864
CNN 53 32 47 0.63 0.53 0.5730
IDSIA13 70 9 30 0.89 0.70 0.7821
IPAL4 74 32 26 0.70 0.74 0.7184
SUTECH 72 31 28 0.70 0.72 0.7094
NEC12 59 20 41 0.75 0.59 0.6592

Table 2: Evaluation results for mitosis detection using HC+CNN and comparative methods on the ICPR12 dataset.

Figure 3: Mitoses identified by HC+CNN as TP (green circles), FN (yellow circles), and FP (red circles) on the ICPR12
dataset. The TP examples have distinctive intensity, shape and texture while the FN examples are less distinctive in intensity
and shape. The FP examples are visually more alike to mitotic figures than the FNs.

3.4 Results on AMIDA13 Dataset
On the AMIDA13 dataset, the F-measure of our approach (CCIPD/MINDLAB) is 0.319, which ranks 6 among 14 submis-
sions (shown in Figure 6). The 23 study cases, especially case #3 and #6, have many dark spots that are not mitotic figures.
As a result, on these two cases there are many false positives that are clearly apoptotic nuclei, lymphocytes or compressed
nuclei. The IDSIA team won this challenge with a F-measure of 0.611, using the same aforementioned CNN models as on
the ICPR12 dataset. Note however that there is hardly any difference between the teams that ranked 3-6, in essence all of
these teams tying for third place.

Figure 7 shows detection results on two HPF slices. The left HPF has extremely rich dark spots that are not mitotic
nuclei but look very similar to mitosis. The existence of these confounder instances tends to increase the false positive hit
rate. On the right HPF, non-mitotic nuclei are significantly less but mitotic figures tend to be difficult to identify. Moreover,
color differences between the two HPFs increases the difficulty of detecting mitoses on this dataset.

The training time for our approach is about 4 days, which though long is significantly less compared to the training
burden of the IDSIA approach. Extracting handcrafted features and training of the CNN model are done in parallel to save
time.

Proc. of SPIE Vol. 9041  90410B-6
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Figure 3: Mitoses identified by HC+CNN as TP (green circles), FN (yellow circles), and FP (red circles) on the ICPR12

HPF

Handcrafted features

Feature learning

Classifier 1

Classifier 3

Probabilistic 
fusion

Classifier 2

HPF Segmentation

Figure 1: Workflow of our methodology. Blue-ratio thresholding14 is first applied to segment mitosis candidates. On each
segmented blob, handcrafted features are extracted and classified via a Random Forests classifier. Meanwhile, on each
segmented 80 ⇥ 80 patch, convolutional neural networks (CNN)8 are trained with a fully connected regression model as
part of the classification layer. For those candidates that are difficult to classify (ambiguous result from the CNN), we train
a second-stage Random Forests classifier on the basis of combining CNN-derived and handcrafted features. Final decision
is obtained via a consensus of the predictions of the three classifiers.

2. METHODOLOGY
2.1 Candidate Segmentation
We segment likely mitosis candidates by first converting RGB images into blue-ratio images,14 in which a pixel with a high
blue intensity relative to its red and green components is given a higher value. Laplacian of Gaussian (LoG)15 responses are
then computed to discriminate the nuclei region from the background, followed by integrating globally fixed thresholding
and local dynamic thresholding to identify candidate nuclei.

2.2 Detection with Convolutional Neural Networks
2.2.1 CNN architecture
First, each HPF is converted from the RGB space to the YUV space and normalized to a mean of zero and variance of
one. The CNN architecture employs 3 layers: two consecutive convolutional and pooling layers and a final fully-connected
layer. The convolution layer applies a 2D convolution of the input feature maps and a convolution kernel. The pooling
layer applies a L2 pooling function over a spatial window without overlapping (pooling kernel) per each output feature
map. Learning invariant features will be allowed through the L2 pooling. The output of the pooling layer is subsequently
fed to a fully-connected layer, which produces a feature vector. The outputs of the fully-connected layer are two neurons
(mitosis and non-mitosis) activated by a logistic regression model. The 3-layer CNN architecture comprises 64, 128, and
256 neurons, respectively. For each layer, a fixed 8⇥ 8 convolutional kernel and 2⇥ 2 pooling kernel were used.

2.2.2 Training stage
To deal with class-imbalance and achieve rotational invariance, candidate image patches containing mitotic nuclei were du-
plicated with artificial rotations and mirroring. The whole CNN model was trained using Stochastic Gradient Descent16 to
minimize the loss function: L(x) = �log

h
exiP
j

exj

i
, where xi corresponds to outputs of a fully-connected layer multiplied

by logistic model parameters. Thus the outputs of CNN are the log likelihoods of class membership.

Proc. of SPIE Vol. 9041  90410B-3
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Medulloblastoma Di↵erentiation Fusioning UFL and Riesz Features 3

and sparse Autoencoders (sAE), against MR8 and Haar texture descriptors. The
results demonstrated the superior performance of the features learned by TICA.
TICA features provided the best results because they learn a good represen-
tation by capturing a rotation and translation invariant representation of cell
organizations in the anaplastic MB subtype.

Neural networks are the dominant approach for representation learning, how-
ever there are other representation learning strategies which are able to adapt
conventional image descriptors to the needs of a particular image analysis task.
In [11], the authors propose a multiscale texture signature learning approach
using rotation covariant Riesz wavelets, where most relevant combinations of
orientations and scales are learnt directly from the data. This approach outper-
formed state-of-the-art representations based on local binary patterns and grey
level cooccurrence matrices for lung tissue classification [12].

In this work, we propose a joint framework for classification of MBWSI where
the invariant properties of TICA features and the multi-scale rotation covariant
properties of Riesz wavelets features complement each other. We hypothesize
that this fusion can lead to a better classification performance. This work join
e↵orts of [11] and [9] in a simple manner to achieve the best accuracy reported
for this histopathology WSI database.

2 Material and Methods

The overall workflow of the proposed approach for learning the anaplastic texture
signature, UFL feature extraction, feature fusion and classification is summarized
in Fig. 2. As first step, we compute the UFL features learned by TICA and the
supervised features learned with Riesz wavelets for each image as described in
Sections 2.1 and 2.2. Once both TICA and Riesz wavelets are computed a final
step of supervised classification is made using the combination of the computed
features in a concatenated vector as input for a standard softmax classifier as
described in section 2.3. Parameter tuning is presented in section 2.5.

[2.4] Medulloblastoma 
        Image Cases

Fig. 2. Flowchart for MB feature extraction and classification for both learned repre-
sentations: Riesz and TICA, the details of each stage are described in subsections.
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Table 1. MB classification performance comparison between baseline methods, Riesz
wavelet framework configurations and the proposed fusion strategy, average measures
on the 20 test runs with standard deviation where available.

Method Accuracy Sensitivity Specificity

TICA + Riesz[N1
3 , N

2
2 , N

2
1 ] 0.997 +/- 0.002 0.995 +/- 0.004 1 +/- 0

TICA[9] 0.972 +/- 0.018 0.977 +/- 0.021 0.967 +/- 0.031

Riesz [N1
3 , N

2
2 , N

2
1 ] 0.964 +/- 0.038 0.999 +/- 0.001 0.932 +/- 0.07

Riesz [N1
3 ] 0.958 +/- 0.062 0.963 +/- 0.05 0.916 +/- 0.125

Riesz [N2
2 ] 0.94 +/- 0.02 0.94 +/- 0.02 0.3 +/- 0.04

CNN [9] 0.90 +/- 0.1 0.89 +/- 0.18 0.9 +/- 0.0.3

sAE [9] 0.90 0.87 0.93

BOF + A2NMF (Haar) [10] 0.87 0.86 0.87

Riesz [N2
1 ] 0.85 +/- 0.23 0.9 +/- 0.15 0.7 +/- 0.47

BOF + K - NN (Haar) [2] 0.80 - -

BOF + K - NN (MR8)[2] 0.62 - -

Fig. 3. Predictions over two test WSI cases, on top anaplastic medulloblastoma and
in bottom non-anaplastic
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boundary
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Figure 1. CNN architecture to classify between healty and exudate patches

windows or filters moving through a stride with a kernel size that represent the re-
ceptive field. Each window is convolved computing the dot product between the filter
and the input generating an activation map of that filter. Pooling layer is a non-linear
function to reduce the size of the convolutional layer by extracting the most represen-
tative value in a window defined by a kernel with a given stride. Max Pooling is the
used to choose the maximum activation of the filter in a particular neighborhood. Fully-
connected layer is a layer where all the neurons have full connections among all the
neurons in the previous layer. Supervised CNN models are one of the most successful
deep learning models for computer vision and medical imaging field is rapidly adapting
this models to solve and improve in a plethora of applications[21]. Our deep learning
model is based on a CNN architecture called LeNet[10] with 7 layers as shown in the
inner block of Figure 1, which is composed of a patch input layer followed by two con-
volutions and max pooling operations to finalize in a softmax classification layer that
outputs the probability of a patch being healty or exudate.

The first stage of the block diagram shown at Figure 1 is the cropping of the eye
fundus image with size ranging from 1440⇥960 to 2540⇥1690 pixels. The extraction
of healthy and exudate patches of 48⇥ 48 pixels were made as follows, for healty a
stratified set of patches were selected in which the borders and internal sections of the
eye were both considered in order to train a more robust model, for exudates patches,
were considered positives just the ones that exceed on a threshold of a 60% the exudate
area.

2.1 Preprocessing

Preprocessing is a usual step in the medical image processing pipeline to enhance the
characteristics of the image. The application of a set of transformations may improve
the performance in the following stages. We enclose the exudate in a bounding box in
order to extract the Region of interest (ROI) from the eye fundus image. Computer-
aided diagnosis (CADx) systems aim at classifying a previously identified ROI in the
whole film image. This ROI can be obtained by a manual segmentation or automati-
cally detected by a computer aided detection system. Because of lesions in e-ophtha
dataset 4.1 were manually segmented, we fixed the input size to ROIs of 48⇥48 pixels
according to the mean of the lesion’s size. With this, ROIs can be easily extracted by
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taking a bounding box of the segmented region. Specifically, images were cropped to
the bounding box of the lesions, where the lesion is centered without scaling and pre-
serving the surrounding region. The condition to label a patch as a true exudate is that
the intersection of the patch with an exudate region be greater than the 60% of the ROI.
Otherwise, the patch was labelled as healthy patch.

Data augmentation The expressiveness of neural network models, and particularly
deep ones, comes mainly from the large number of parameters that are learnt. However,
more complex models also increase the chance of overfitting the training data. Data
augmentation is a good way that helps to prevent this behaviour [11]. Data augmenta-
tion is the process of artificially create new samples by applying transformations to the
original data. In a classification problem, data augmentation makes sense because an
exudate can be presented in any particular orientation. Thus, the model also should be
able to learn from such transformations. In particular, for each training image, we have
artificially generated 7 new label-preserving samples using a combination of flipping
and 90,180 and 270 degrees rotation transformations.

3 Active selection of samples

Traditional supervised learning algorithms use whatever labeled data is provided to
induce a model. By contrast, active learning gives the learner a degree of control by
allowing it to select which instances are labeled and added to the training set. A typical
active learner begins with a small labeled set L , selects one or more informative query
instances from a large unlabeled pool U , learns from these labeled queries (which are
then added to L ), and repeats[14]. The principle behind active learning is that a ma-
chine learning algorithm can achieve similar or even greater accuracy when trained with
fewer training labels than the fully supervised one if the algorithm is allowed to choose
the data from which it learns from [13]. An active learner may pose queries, usually in
the form of unlabeled data instances to be labeled by an oracle (e.g., a human anno-
tator). Active learning is well-motivated in many modern machine learning problems,
where unlabeled data may be abundant or easily obtained but labels are not, this is an
interesting direction for the so-called deep learning in the small data regime, where the
objective is to train the time-consuming and high sample complexity algorithms, with
less resources, as in the case of medical imaging labelling.

3.1 Expected Gradient Length

Stochastic Gradient Descent (SGD) works by optimizing stochastically an objective
function J with respect to the model parameters q , this is, finding the model parame-
ters by optimizing with only one sample or sample batches instead of the full training
dataset:

q = q �h—Ji(q)

Where Ji(q) is the objective function evaluated at the i-th sample tuple (xi,yi), h
is the learning rate and — is the gradient operator. For computing —Ji(q) we need the
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i-th sample representation and its corresponding label, if we meassure the norm of this
term, i.e. the gradient lenght termk—Ji(q )k, this will quantifies how much the i-th sam-
ple and its label contributes to each component of the gradient vector. A natural choice
for selecting the most informative patches for each batch iteration of SGD is to select
the instances that gives the highest values for the gradient lenght weighted by the prob-
ability of that sample having the yi label. In other words, to select that instances that
would impact the greatest change to the current model as if we knew their labels:

F(xi) =
c

Â
j=1

p(yi = j|xi)k—Ji(q )k (1)

Where c is the total number of labels or classes, the Expected Gradient Lenght
(EGL) works by sorting the F values from an unlabeled pool of samples and then
adding them to the training dataset by asking an oracle to give us the ground truth label
of those samples.

3.2 EGL for Patch Selection in Convolutional Neural Networks

For being able to select the most informative samples in a CNN architecture we have
to compute the two terms involved in equation (1), first, for the probability of a sample
having the j-th label we can perform a forward propagation through the network and
obtain the corresponding probabilities from the softmax layer of the network, secondly,
to measure the gradient lenght we can perform a backward propagation through the net-
work to meassure the frobenius norm of the gradient parameters, in a CNN architecture
we have the flexibility to compute the backward/forward phases up to a certain layer,
in our experiments we made the backward down to first fully conected layer as exper-
iments showed no significative diference for in between layers. This process must be
done over all the posible labels for each sample. Once we have computed the F values
for all the samples, we sort them and select the k samples with higher EGL values. We
begin with a small portion of labeled samples L 0 ⇢ L to train an initial model M, and
then incrementally adding the k samples to L 0 to update M parameters. The steps of
the algorithm are depicted in Algorithm 1

Algorithm 1 EGL for Active Selection of patches in a Convolutional Neural Network
Require: Patches Dataset L , Initial Trained Model M, Number k of most informative patches
1: while not converged do
2: Create and shuffle batches from L
3: for each batch do
4: Compute F(x) using M,8x 2 batch
5: end for
6: Sort all the F Values and return the higher k corresponding samples Lk
7: Update M using L 0 [Lk
8: end while
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Figure 2. Impact of initial number of images in Sensitivity and Specificity of the model using
EGL with all the training patches from all images (First Row) and just one initial image (Second
Row), with patches of only one image the model falls into a local minima and is not able to
recover in performance when it sees more batches. Each graph is the average of 10 experiments.

Figure 3. Results for F-meassure, Sensitivity and Specificity, using Random Strategy (Green) and
Active learning using EGL (Blue), in this experiments all the patches from all the training images
were used for training the model using Algorithm 1.
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3.3 EGL for Image Selection in Convolutional Neural Networks

Since we are able to compute the most significative patches it is straightforward to ex-
tend the procedure to select not only the most informative patches but also the most
informative images within training set, the modification is that instead of computing
the EGL values for all the ground truth exudate and healthy patches we compute the in-
terestingness of an image by patchifying the image with a given stride and then densely
computing F , then sorting the images by their top EGL values and finally adding the
patches that belongs to the more interesting image to the training set for further parame-
ter updates using Algorithm 1 until convergence, we believe that this is a more realistic
scenario where an ophthalmologist does not have the time to manually annotate all the
images but only the ones that contains more information to train a label efficient system.
The full algorithm is described in Algorithm 2.

Algorithm 2 EGL for Active Selection of images in a Convolutional Neural Network
Require: Training Images Set T , Patches Dataset L , Number µ of initial images to look

Select an initial set Tµ of images randomly
2: Train Initial Model M using the ground truth patches from the µ images

while not converged do
4: for each image in T \Tµ do

Patchify image and compute simage = Â
patch2image

F(patch), using M

6: end for
Sort all the simage values and return Imax, the image with higher sum

8: Tµ = Tµ [Imax
Lµ = { patch 2 LI ,8I 2 Tµ}

10: Update M with k selected patches using Algorithm 1 and the patches in Lµ
end while

We can also plot an interestingness mask based on the computed EGL values of the
images simply by reshaping the EGL values of all the patches to the image size, this is
illustrated in section 5

4 Experimental setup

4.1 Ophtha Dataset

The e-ophtha database with color fundus images was used in this work. The database
contains 315 images with size ranging from 1440⇥ 960 to 2540⇥ 1690 pixels, 268
images with no lesion and 47 with exudates which were segmented by ophthalmolo-
gists from the OPHDIAT Tele-medical network under the the French Research Agency
(ANR) project [9]. The labelled patches dataset was created with 48 × 48 pixels patches
that containsfor both exudate and healthy classes, after the preprocessing steps: crop-
ping and data augmentation was randomly split by images where a patient image could
only belong to a group with the following dataset distribution: Training split with 8760
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Figure 4. Results for F-meassure, Sensitivity and Specificity, using Random Strategy (Blue) and
Active learning using EGL (Green) for algorithm 2, in this setup only the patches from 4 initial
training images were used for training the model in the first 6 SGD iterations, after this (Orange
line) we add to the training set the patches from the images with maximum EGL value.

60% of the ROI were labelled as exudates. The generation of the mask images with the
labelled exudates takes on average 5-7 minutes including the time to train the model.

Finally, we validated the proposed method applied to the test dataset. In Table 3 is
reported the accuracy, sensitivity and specificity of the proposed method compared with
the baseline method. The proposed method clearly outperforms Decencieriere et al [9]
in both sensitivity and specificity. This shows that the proposed method is able to better
capture the visual features that characterize exudates.

Method F-meassure Sensitivity Specificity
Decencieriere et al (2013) - 90 70

Full training of dataset (10 epochs) 99.8 99.5
Algorithm 2 - 20% Samples (0.2 epochs) 98.7 99.7

Table 1. Performance measures in the baseline model and the proposed method.

6 Discussion and conclusion

In this paper, we introduce the expected gradient length algorithm into the training of
deep convolutional neural networks for exudate classification in eye fundus images.
Our propossed method is able to significantly reduce training time obtaining and at the
same time obtaining a good performance comparable to the training of the system with
the full annotated dataset, also the propossed strategy is usefull for selecting the most
informative images in the dataset, helping to decrease the effort of ophthalmologists’
workload to build datasets for training CADx systems based on supervised machine
learning algorithms.
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