
Representation Learning 
and Deep Learning

Fabio A. González
Univ. Nacional de Colombia



Fabio A. González Universidad Nacional de Colombia

Some history



https://www.youtube.com/watch?v=cNxadbrN_aI

https://www.youtube.com/watch?v=cNxadbrN_aI


Fabio A. González Universidad Nacional de Colombia

Rosenblatt’s Perceptron 
(1957)

• Input: 20x20 photocells array 

• Weights implemented with 
potentiometers 

• Weight updating performed by 
electric motors
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Backpropagation

Source: http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html


Fabio A. González Universidad Nacional de Colombia

Backpropagation

Source: http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

©          Nature Publishing Group1986

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html


Fabio A. González Universidad Nacional de Colombia

Backpropagation

Source: http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

©          Nature Publishing Group1986

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html


Fabio A. González Universidad Nacional de Colombia

Neural networks time line

1943 20161957 1969 1986 1995 2007 2012



Fabio A. González Universidad Nacional de Colombia

Neural networks time line

1943 20161957 1969 1986 1995 2007 2012



Fabio A. González Universidad Nacional de Colombia

Neural networks time line

1943 20161957 1969 1986 1995 2007 2012



Fabio A. González Universidad Nacional de Colombia

My own history with NN 
(circa 1993)



Quick and Dirty 
Introduction to Keras

Interactive Demo
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Deep Learning
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We show how to use “complementary priors” to eliminate the explaining-
away effects that make inference difficult in densely connected belief nets
that have many hidden layers. Using complementary priors, we derive a
fast, greedy algorithm that can learn deep, directed belief networks one
layer at a time, provided the top two layers form an undirected associa-
tive memory. The fast, greedy algorithm is used to initialize a slower
learning procedure that fine-tunes the weights using a contrastive ver-
sion of the wake-sleep algorithm. After fine-tuning, a network with three
hidden layers forms a very good generative model of the joint distribu-
tion of handwritten digit images and their labels. This generative model
gives better digit classification than the best discriminative learning al-
gorithms. The low-dimensional manifolds on which the digits lie are
modeled by long ravines in the free-energy landscape of the top-level
associative memory, and it is easy to explore these ravines by using the
directed connections to display what the associative memory has in mind.

1 Introduction

Learning is difficult in densely connected, directed belief nets that have
many hidden layers because it is difficult to infer the conditional distribu-
tion of the hidden activities when given a data vector. Variational methods
use simple approximations to the true conditional distribution, but the ap-
proximations may be poor, especially at the deepest hidden layer, where
the prior assumes independence. Also, variational learning still requires all
of the parameters to be learned together and this makes the learning time
scale poorly as the number of parameters increases.

We describe a model in which the top two hidden layers form an undi-
rected associative memory (see Figure 1) and the remaining hidden layers
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Deep —> Bigger

Revolution of Depth

3.57

6.7 7.3

11.7

16.4
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ILSVRC'15
ResNet

ILSVRC'14
GoogleNet

ILSVRC'14
VGG

ILSVRC'13 ILSVRC'12
AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

8 layers
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Data…

• Images annotated with 
WordNet concepts 

• Concepts: 21,841 

• Images: 14,197,122 

• Bounding box annotations: 
1,034,908 

• Crowdsourcing
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HPC

PARALLEL PROGRAMMING IN CUDA C

50

r i

GPU JULIA SET

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, 

                              bitmap.image_size() ) );

    dim3    grid(DIM,DIM);

    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), 

                              dev_bitmap, 

                              bitmap.image_size(), 

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    cudaFree( dev_bitmap );

}

main()
DIM DIM 

Sanders_book.indb   50 6/12/10   3:15:26 PM
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Algorithms

• Backpropagation 

• Backpropagation through time 

• Online learning (stochastic 
gradient descent) 

• Softmax (hierarchical)
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Tricks

• DL is mainly an engineering 
problem 

• DL networks are hard to train 

• Several tricks product of years 
of experience

• Layer-wise training 

• RELU units 

• Dropout 

• Adaptive learning rates 

• Initialization 

• Preprocessing 

• Gradient norm clipping
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Applications
• Computer vision: 

• Image: annotation, detection, segmentation, captioning 

• Video: object tracking, action recognition, segmentation 

• Speech recognition and synthesis 

• Text: language modeling, word/text representation, text 
classification, translation 

• Biomedical image analysis
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Convolutional Neural 
Networks
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Visual Cortex
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Neocognitron 
(Fukushima, 1980)
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LeNet 
(LeCun, 1998)
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Convolution

Introduction
Machine learning

The machine learning process
Deep learning

Convolutional neural networks
Training

Convolution

(source: ICML2013 Deep Learning Tutorial, Yan LeCun et al.)

Fabio A. Gonzáleza , John Arévaloa , Raúl Ramosb , Diego Ruedab An Introduction to Machine Learning with Deep Neural Networks

Introduction
Machine learning

The machine learning process
Deep learning

Convolutional neural networks
Training

Convolution

(source: ICML2013 Deep Learning Tutorial, Yan LeCun et al.)

Fabio A. Gonzáleza , John Arévaloa , Raúl Ramosb , Diego Ruedab An Introduction to Machine Learning with Deep Neural Networks

(sources: ICML2013 Deep Learning Tutorial, Yan LeCun et al. 
     Feature extraction using convolution, Stanford Deep Learning Wiki )  

http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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Convolution
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Pooling

(source: Karpathy, CS231n Convolutional Neural Networks for Visual Recognition)  

http://cs231n.github.io/convolutional-networks/
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Pooling

(source: Karpathy, CS231n Convolutional Neural Networks for Visual Recognition)  

http://cs231n.github.io/convolutional-networks/
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Interactive Demo
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Recurrent neural network

Neural networks with memory

Feed-forward NN: output
exclusively depends on the current
input

Recurrent NN: output depends in
current and previous states

This is accomplished through
lateral/backward connections
which carry information while
processing a sequence of inputs

(source: http://colah.github.io/posts/2015-08-
Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks

Recurrent NN
• Neural networks with memory 

• Feed-forward NN: output 
exclusively depends on the 
current input 

• Recurrent NN: output depends 
on current and previous states 

• This is accomplished through 
lateral/backward connections 
which carry information while 
processing a sequence of 
inputs
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Character-level 
language model
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Network unrolling
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Backpropagation through 
time (BPTT)
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BPTT is hard
• The vanishing and the 

exploding gradient problem 

• Gradients could vanish (or 
explode) when propagated 
several steps back 

• This makes difficult to learn 
long-term dependencies. 

• Razvan Pascanu, Tomas Mikolov, and 
Yoshua Bengio. 2013. On the difficulty 
of training Recurrent Neural Networks. 
Proc. of ICML, abs/1211.5063.
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Long term dependencies
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Long short-term memory 
(LSTM)

• LSTM networks solve the problem of long-term 
dependency problem. 

• They use gates that allow to keep memory 
through long sequences and be updated only 
when required. 

• Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term 
memory." Neural computation 9, no. 8 (1997): 1735-1780.
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Conventional RNN vs LSTM
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Conventional RNN vs LSTM

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks
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Forget gate

Controls the flow of the
previous internal state
Ct�1

ft = 1 ) keep previous
state

ft = 0 ) forget previous
state

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks

Forget gate

• Controls the flow of the 
previous internal state Ct-1 

• ft=1 ⇒ keep previous state 

• ft=0 ⇒ forget previous state
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Introduction
Machine learning
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Recurrent neural networks
Long short-term memory networks
Variants
Interactive Demo
Some applications
Resources

Input gate

Controls the flow of
input information (xt)

it = 1 ) take input into
account

it = 0 ) ignore input

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks

Input gate

• Controls the flow of the input 
state xt 

• it=1 ⇒ take input into account 

• it=0 ⇒ ignore input
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Current state calculation
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Current state calculation

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks
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Gated recurrent units
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Gated recurrent units

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078.
(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Fabio A. González Representation Learning with Neural Networks

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, 
Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical 
machine translation. arXiv preprint arXiv:1406.1078.
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The Unreasonable Effectiveness 
of Recurrent Neural Networks

• Famous blog entry from Andrej Karpathy (UofS) 

• Character-level language models based on multi-layer LSTMs. 

• Data: 

• Shakspare plays 

• Wikipedia 

• LaTeX 

•  Linux source code
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Algebraic geometry book in 
LaTeX
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Linux source code
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Linux source code

/*

* Increment the size file of the new incorrect UI_FILTER group information

* of the size generatively.

*/

static int indicate_policy(void)

{

int error;

if (fd == MARN_EPT) {

/*

* The kernel blank will coeld it to userspace.

*/

if (ss->segment < mem_total)

unblock_graph_and_set_blocked();

else

ret = 1;

goto bail;

}

segaddr = in_SB(in.addr);

selector = seg / 16;

setup_works = true;

for (i = 0; i < blocks; i++) {

seq = buf[i++];

bpf = bd->bd.next + i * search;

if (fd) {

current = blocked;

}

}

Fabio A. González Representation Learning with Neural Networks
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Multimodal models

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image 
descriptions." CVPR2015. arXiv preprint arXiv:1412.2306 (2014).
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CNN for text
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Additional Resources on 
RNN

• Christopher Olah, Understanding LSTM Networks, [http://
colah.github.io/posts/2015-08-Understanding-LSTMs/] 

• Denny Britz, Recurrent Neural Networks Tutorial, [http://
www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns/] 

• Andrej Karpathy, The Unreasonable Effectiveness of 
Recurrent Neural Networks, [http://karpathy.github.io/
2015/05/21/rnn-effectiveness/] 

• Jürgen Schmidhuber, Recurrent Neural Networks, [http://
people.idsia.ch/~juergen/rnn.html]
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Deep Learning at
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Feature learning for cancer 
diagnosis

Artificial Intelligence in Medicine 64 (2015) 131–145
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a  b  s  t  r  a  c  t

Objective:  The  paper  addresses  the problem  of  automatic  detection  of basal  cell carcinoma  (BCC)  in
histopathology  images.  In particular,  it proposes  a framework  to  both,  learn  the image  representation  in
an  unsupervised  way  and  visualize  discriminative  features  supported  by  the  learned  model.
Materials  and methods:  This  paper  presents  an  integrated  unsupervised  feature  learning  (UFL)  framework
for  histopathology  image  analysis  that comprises  three  main  stages:  (1) local  (patch)  representation
learning  using  different  strategies  (sparse  autoencoders,  reconstruct  independent  component  analy-
sis  and  topographic  independent  component  analysis  (TICA),  (2)  global  (image)  representation  learning
using  a  bag-of-features  representation  or a  convolutional  neural  network,  and  (3) a  visual interpretation
layer  to highlight  the  most  discriminant  regions  detected  by  the  model.  The  integrated  unsupervised
feature  learning  framework  was  exhaustively  evaluated  in  a histopathology  image  dataset  for BCC  diag-
nosis.
Results: The  experimental  evaluation  produced  a classification  performance  of  98.1%,  in  terms  of the
area  under  receiver-operating-characteristic  curve,  for  the  proposed  framework  outperforming  by  7%
the state-of-the-art  discrete  cosine  transform  patch-based  representation.
Conclusions:  The  proposed  UFL-representation-based  approach  outperforms  state-of-the-art  methods  for
BCC  detection.  Thanks  to its visual  interpretation  layer,  the  method  is  able  to  highlight  discriminative
tissue  regions  providing  a better diagnosis  support.  Among  the  different  UFL  strategies  tested,  TICA-
learned  features  exhibited  the  best  performance  thanks  to  its  ability  to  capture  low-level  invariances,
which  are  inherent  to the  nature  of the  problem.

© 2015  Elsevier  B.V.  All rights  reserved.

1. Introduction

Digital pathology refers to the set of computational methods and
technologies that support the different pathology workflow stages,
including digital slide acquisition, computer aided diagnosis, prog-
nosis and theragnosis [1]. The importance and popularity of digital
pathology have rapidly grown during the last years thanks of the
emergence of fast, cost-effective whole slide image acquisition sys-
tems. An important component of digital pathology is automatic
image analysis, which is fundamental for tasks such as automatic

∗ Corresponding author. Tel.: +57 1 3165322; fax: +57 1 3165491.
E-mail addresses: jearevaloo@unal.edu.co (J. Arevalo), aacruzr@unal.edu.co

(A. Cruz-Roa), vlariasp@unal.edu.co (V. Arias), edromero@unal.edu.co (E. Romero),
fagonzalezo@unal.edu.co (F.A. González).

tumor detection and grading [2]. Automatic image analysis encom-
passes different kinds of computer vision and pattern recognition
problems associated with the detection, segmentation and classifi-
cation of biological structures (pathological and non-pathological).

The success of any histopathology image analysis method
depends on how well it captures morphological and architec-
tural characteristics from nuclei, cells, glands, organs and tissues.
In turn this depends on how well the method characterizes the
visual content of the histopathology image. This characterization
is accomplished by a feature extraction process which typically
uses canonical (e.g. wavelet transforms) or hand-engineered fea-
tures (e.g. SIFT). Different visual features have been proposed and
extensively evaluated in different histopathology image analy-
sis problems: (1) object level features to characterize biological
structures, e.g. size and shape, radiometric and densitometric, tex-
ture, chromatin-specific; (2) spatially related features to represent

http://dx.doi.org/10.1016/j.artmed.2015.04.004
0933-3657/© 2015 Elsevier B.V. All rights reserved.
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Fig. 2. Convolutional auto-encoder neural network architecture for histopathology image repre-
sentation learning, automatic cancer detection and visually interpretable prediction results anal-
ogous to a digital stain identifying image regions that are most relevant for diagnostic decisions.

where J(W ) is the typical cost function used to train a neural network, β controls the
weight of sparsity penalty term. KL(ρ ||ρ̂ j) corresponds to Kullback–Leibler divergence
between ρ , desired sparsity parameter, and ρ̂ j, average activation of hidden unit j (av-
eraged over the training set).

Step 2. Image representation via convolution and pooling: Any feature wk can
act as a filter, by applying a convolution of the filter with each image to build a feature
map. The set of feature maps form the convolutional layer. Thus, a particular input im-
age is represented by a set of k features maps, each showing how well a given pattern
wi spatially matches the image. This process effectively increases the size of the inter-
nal representation (≈ k×the size of the original representation) of the image. The next
layer acts in the opposite direction by summarizing complete regions of each feature
map. This is accomplished by neurons that calculate the average (pool function) of a
set of contiguous pixels (pool dimension). The combination of convolution and pooling
provide both translation invariance feature detection and a compact image representa-
tion for the classifier layer.

Step 3. Automatic detection of BCC via softmax classifier: A softmax classifier,
which is a generalization of a logistic regression classifier [2], takes as input the con-
densed feature maps of the pooling layer. The classifier is trained by minimizing the

following cost function: J(Θ) =− 1
m

[
m
∑

i=1
y(i) loghΘ (x(i))+ (1+ y(i)) log(1− hΘ(x(i)))

]
,

where
{
(x(1),y(1)), . . . ,(x(m),y(m))

}
is the corresponding training set of m images, where

the i-th training image is composed of y(i) class membership and x(i)image representa-
tion obtained from the output of the pooling layer, and Θ is a weight vector dimension
k×n (where n is the pool dimension). The output neuron has a sigmoid activation func-
tion, which produces a value between 0 and 1 that can be interpreted as the probability
of the input image being cancerous.
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Fig. 8. Local learned features with different unsupervised feature learning methods. Left: sparse autoencoders learned some features that are visually related with partic-
ularities of the histopathology dataset (i.e. nuclei shapes) which are highlighted by red squares. Center: reconstruct independent component analysis. Right: topographic
component analysis highlighting some translational (blue), color (red), scale (yellow) and rotational (green) invariances. (For interpretation of the references to color in this
figure  legend, the reader is referred to the web  version of this article.)

Fig. 9. Discriminant map  of learned features. Enclosed with red path are related with positive (basal cell carcinoma) class and enclosed by blue path are related with negative
(healthy tissue) class. Left: softmax weights mapped back to topographic organization. Center: features learned with topographic component analysis. Right: top-10 of most
discriminative features for positive (top) and negative (bottom) classes. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

pool size is not very significant in terms of time for feature extrac-
tion process. Excluding SAE second layer, any feature extraction
model proposed here takes less than 2 s to extract features from
a new image, making them a feasible method to use in real world
scenarios.

Notice that this approach is not directly comparable to tradi-
tional features in terms of computational cost, because the feature
learning stage is an additional step in the framework. However,
once the feature detectors are learned, these may  be use with any
classification method.

4.9. Overall BCC classification results

Table 4 summarizes the systematic evaluation performed in this
work in terms of AUC using a conventional softmax classifier. In
addition, we  also train a linear SVM model for each representation
to validate that our findings are consistent, independently of the
selected classifier. First, the results show that learning the repre-
sentation from data yields better performance than using DCT and
Haar canonical feature detectors. However, it is noteworthy that the
representation learned with the STL-10 dataset performed worst.

Fig. 10. Selected patches from optimal stimuli of second layer of sparse autoencoders.
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Table  2
Outputs produced by the system for different cancer and non-cancer input images. The table rows show from top to bottom: the real image class, the input image, the class
predicted by the model, the probability associated to the prediction, and the digital stained image (red stain indicates cancer regions, blue stain indicates normal regions).

Fig. 11. Digital staining on independent and larger images.

Table 3
Computing time ([h]ours or [s]econds) for feature learning and feature extraction for several configurations. Average time per image is reported for feature extraction.

Unsupervised feature learning method # of params Training time Feature extraction time (per image)

Pool size = 1 Pool size = 20

TICA – Layer 1 76,800 0.27 h 0.42 s 0.47 s
TICA  – Layer 2 640,000 1.56 h 0.88 s –
SAE  – Layer 1 154,192 0.38 h 0.86 s 0.85 s
SAE  – Layer 2 1,282,000 2.14 h 20.9 s –
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ABSTRACT
Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key
component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e.
undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at
multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The
development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded
by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture
certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks
(CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models
tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the
handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled
training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are
largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of
feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature
extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently
combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN
model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted
features and CNN-derived features enables the possibility of maximizing performance by leveraging the disconnected
feature sets. Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 High Power Fields
(HPF, x400 magnification) by several pathologists and 15 testing HPFs yielded an F-measure of 0.7345. Apart from
this being the second best performance ever recorded for this MITOS dataset, our approach is faster and requires fewer
computing resources compared to extant methods, making this feasible for clinical use.

1. INTRODUCTION
Bloom Richardson grading,1 the most commonly used system for histopathologic diagnosis of invasive breast cancers
(BCa),2 comprises three main components: tubule formation, nuclear pleomorphism, and mitotic count. Mitotic count,
which refers to the number of dividing cells (i.e. mitoses) visible in hematoxylin and eosin (H & E) stained histopathology,
is widely acknowledged as a good predictor of tumor aggressiveness.3 In clinical practice, pathologists define mitotic
count as the number of mitotic nuclei identified visually in a fixed number of high power fields (400x magnification).
However, the manual identification of mitotic nuclei often suffers from poor inter-rater agreement due to the highly variable
texture and morphology between mitoses. Additionally this is a very laborious and time consuming process involving
the pathologist manually looking at and counting mitoses from multiple high power view fields on a glass slide under a
microscope. Computerized detection of mitotic nuclei will lead to increased accuracy and consistency while simultaneously
reducing the time and cost needed for BCa diagnosis.?

The detection of mitotic nuclei in H & E stained histopathology is a difficult task for several reasons.3 First, mitosis
is a complex biological process during which the cell nucleus undergoes various morphological transformations. This
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contribute to the loss of these mitotic figures. Figure 4 shows a mitosis detection example using CNN and HC+CNN,
respectively, revealing the improvement obtained by integrating handcrafted features and CNN in HC+CNN.

The two 11-layers neural networks used by IDSIA13 requires roughly 30 epochs, which takes two days for training with
GPU optimization. Our 3-layer CNN needs less than 10 epochs, and requires only 11.4 hours using 9 epochs without GPU
optimization. Including the time needed to extract handcrafted features (6.5 hours in pure MATLAB implementation), the
training stage for HC+CNN was completed in less than 18 hours.

Dataset Method TP FP FN Precision Recall F-measure

Scanner
Aperio

HC+CNN 65 12 35 0.84 0.65 0.7345
HC 64 22 36 0.74 0.64 0.6864
CNN 53 32 47 0.63 0.53 0.5730
IDSIA13 70 9 30 0.89 0.70 0.7821
IPAL4 74 32 26 0.70 0.74 0.7184
SUTECH 72 31 28 0.70 0.72 0.7094
NEC12 59 20 41 0.75 0.59 0.6592

Table 2: Evaluation results for mitosis detection using HC+CNN and comparative methods on the ICPR12 dataset.

Figure 3: Mitoses identified by HC+CNN as TP (green circles), FN (yellow circles), and FP (red circles) on the ICPR12
dataset. The TP examples have distinctive intensity, shape and texture while the FN examples are less distinctive in intensity
and shape. The FP examples are visually more alike to mitotic figures than the FNs.

3.4 Results on AMIDA13 Dataset
On the AMIDA13 dataset, the F-measure of our approach (CCIPD/MINDLAB) is 0.319, which ranks 6 among 14 submis-
sions (shown in Figure 6). The 23 study cases, especially case #3 and #6, have many dark spots that are not mitotic figures.
As a result, on these two cases there are many false positives that are clearly apoptotic nuclei, lymphocytes or compressed
nuclei. The IDSIA team won this challenge with a F-measure of 0.611, using the same aforementioned CNN models as on
the ICPR12 dataset. Note however that there is hardly any difference between the teams that ranked 3-6, in essence all of
these teams tying for third place.

Figure 7 shows detection results on two HPF slices. The left HPF has extremely rich dark spots that are not mitotic
nuclei but look very similar to mitosis. The existence of these confounder instances tends to increase the false positive hit
rate. On the right HPF, non-mitotic nuclei are significantly less but mitotic figures tend to be difficult to identify. Moreover,
color differences between the two HPFs increases the difficulty of detecting mitoses on this dataset.

The training time for our approach is about 4 days, which though long is significantly less compared to the training
burden of the IDSIA approach. Extracting handcrafted features and training of the CNN model are done in parallel to save
time.
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Figure 3: Mitoses identified by HC+CNN as TP (green circles), FN (yellow circles), and FP (red circles) on the ICPR12
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Figure 1: Workflow of our methodology. Blue-ratio thresholding14 is first applied to segment mitosis candidates. On each
segmented blob, handcrafted features are extracted and classified via a Random Forests classifier. Meanwhile, on each
segmented 80 ⇥ 80 patch, convolutional neural networks (CNN)8 are trained with a fully connected regression model as
part of the classification layer. For those candidates that are difficult to classify (ambiguous result from the CNN), we train
a second-stage Random Forests classifier on the basis of combining CNN-derived and handcrafted features. Final decision
is obtained via a consensus of the predictions of the three classifiers.

2. METHODOLOGY
2.1 Candidate Segmentation
We segment likely mitosis candidates by first converting RGB images into blue-ratio images,14 in which a pixel with a high
blue intensity relative to its red and green components is given a higher value. Laplacian of Gaussian (LoG)15 responses are
then computed to discriminate the nuclei region from the background, followed by integrating globally fixed thresholding
and local dynamic thresholding to identify candidate nuclei.

2.2 Detection with Convolutional Neural Networks
2.2.1 CNN architecture
First, each HPF is converted from the RGB space to the YUV space and normalized to a mean of zero and variance of
one. The CNN architecture employs 3 layers: two consecutive convolutional and pooling layers and a final fully-connected
layer. The convolution layer applies a 2D convolution of the input feature maps and a convolution kernel. The pooling
layer applies a L2 pooling function over a spatial window without overlapping (pooling kernel) per each output feature
map. Learning invariant features will be allowed through the L2 pooling. The output of the pooling layer is subsequently
fed to a fully-connected layer, which produces a feature vector. The outputs of the fully-connected layer are two neurons
(mitosis and non-mitosis) activated by a logistic regression model. The 3-layer CNN architecture comprises 64, 128, and
256 neurons, respectively. For each layer, a fixed 8⇥ 8 convolutional kernel and 2⇥ 2 pooling kernel were used.

2.2.2 Training stage
To deal with class-imbalance and achieve rotational invariance, candidate image patches containing mitotic nuclei were du-
plicated with artificial rotations and mirroring. The whole CNN model was trained using Stochastic Gradient Descent16 to
minimize the loss function: L(x) = �log

h
exiP
j

exj

i
, where xi corresponds to outputs of a fully-connected layer multiplied

by logistic model parameters. Thus the outputs of CNN are the log likelihoods of class membership.
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Figure 3: Mitoses identified by HC+CNN as TP (green circles), FN (yellow circles), and FP (red circles) on the ICPR12
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