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Classification problems

• predict(x ) =

{
C1, y(x ) ≥ threshold

C2, y(x ) < threshold
,

with threshold = 0 or threshold = 0.5.

• Three ways to address the classification problem:

1 Directly model the discrimination function: e.g
y(x ) = wTx + w0

2 Generative model:

y(x ) = P(Ck |x ) =
P(x |Ck )P(Ck )

P(x )

3 Discriminative model:

y(x ) = P(Ck |x ) = f (x ),

with f an arbitrary function.
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Linear Models

y(x ) = f (wT x + w0)

• f (·): activation function, may be non-linear

• Even if f (·) is non-linear, the decision boundary is linear

• Also called generalized linear models

• Applicable if instead of x we use a vector of basis functions
φ(x ), corresponding to features in a feature space
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Using regression for classification

• We can use a regression model, such as least squares to fit
a linear classification model with a linear activation
function

min
w ,wo

∑̀
i=1

(ti − wT xi + w0)
2,

where ti ∈ {−1, 1} is the label of the i -th training sample,

• but this strategy does not work well:186 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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Rosemblatt’s perceptron

• Designed by Frank Rossemblat in 1957

• A hardware implementation of the learning algorithm

• The precursor of neural networks

• Criticized by Marvin Minsky, producing a decline in
research funding
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Perceptron learning

• Activation function:

f (a) =

{
+1, a ≥ 0

−1, a < 0

• Loss function:

Ep(w ,w0) = −
∑̀
n=1

f (wT xn + w0)tn ,

• Learning rule:

w (n) = w (n−1) + η(fn − tn)xn

where fn = f (wT xn + w0)
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Perceptron learning

• Activation function:

f (a) =

{
+1, a ≥ 0

−1, a < 0

• Loss function:

Ep(w ,w0) = −
∑̀
n=1

f (wT xn + w0)tn ,

• Learning rule:

w (n) = w (n−1) + η(fn − tn)xn

where fn = f (wT xn + w0)



Linear
Classification

Models

Fabio A.
González
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Perceptron convergence

• If the training points are linearly separable, the perceptron
algorithms converges (perceptron convergence theorem)

• It could converge to different solutions depending on the
order of presentation of training sample

•

4.1. Discriminant Functions 195
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Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (φ1, φ2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.
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Perceptron problems

• Non-probabilistic outputs

• Non-convex optimization problem

• No convergence guarantee if samples are not linearly
separable

• Its power may be increased by stacking several perceptron
layers (multilayer perceptrons) and using smooth
activation functions
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Perceptron problems

• Non-probabilistic outputs

• Non-convex optimization problem

• No convergence guarantee if samples are not linearly
separable

• Its power may be increased by stacking several perceptron
layers (multilayer perceptrons) and using smooth
activation functions



Linear
Classification

Models

Fabio A.
González
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Outline

1 Introduction

2 The perceptron

3 Logistic regression

4 Logistic regression optimization



Linear
Classification

Models

Fabio A.
González
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Parametric discrimination

• These three conditions are equivalent:

• P(C1|x ) ≥ 0.5

• P(C1|x)
1−P(C1|x) ≥ 1

• logit(P(C1|x )) = log P(C1|x)
1−P(C1|x) ≥ 0

• If we assume that P(x |C1) and P(x |C2) are normally
distributed sharing the same covariance matrix:

logit(P(C1|x )) = log
P(C1|x )

P(C2|x )
= wT x + w0,

where

w = Σ−1(µ1 + µ2)

w0 = −1

2
(µ1 + µ2)

TΣ−1(µ1 + µ2) + log
P(C1)

P(C2)
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Logistic function

• The logit function:

logit(P(C1|x )) = log
P(C1|x )

1− P(C1|x )
= wT x + w0

• The inverse-logit:

P(C1|x ) = σ(wT x + w0) =
1

1 + e−(wT x+w0)

• σ is called the logistic or sigmoid function.
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Logistic regression

•
y(x ) = P(C1|x ) = σ(wT x )

• Find w using maximum likelihood estimation:

p(t|w) =
∏̀
n=1

y tnn (1− yn)1−tn ,

where t = {t1, . . . , t`} and yn = y(xn).

• Cross-entropy error:

E (w) = − ln p(t|w) = −
∑̀
n=1

[tn ln yn + (1− tn) ln(1− yn)]
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Multiclass logistic regression

•

yk (x ) = P(Ck |x ) =
ew

T
k x∑

j e
wT
j x

• Likelihood:

p(T|w1 . . .wK ) =
∏̀
n=1

K∏
k=1

y tnknk ,

where ynk = yk (xn) and T ∈ R`×K is a matrix of target
variables with elements tnk .

• Multiclass cross-entropy error:

E (w1, . . . ,wK ) = − ln p(T|w1 . . .wK ) = −
∑̀
n=1

K∑
k=1

tnk ln ynk
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Optimization problem

•

min
w

E (w) = min
w
−
∑̀
n=1

[tn ln yn + (1− tn) ln(1− yn)]

•

∇E (w) =
∑̀
n=1

(yn − tn)φn

•

w (τ+1) = w (τ) − η
∑̀
n=1

(yn − tn)φn
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Newton-Raphson

•
w (τ+1) = w (τ) −H−1∇E (w)

•
∇E (w) = ΦT (y − t)

•
H = ∇∇E (w) = ΦTRΦ,

with R a diagonal matrix with Rnn = yn(1− yn).

• The resulting algorithm is called iterative reweighted least
squares.
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Regularization

•

min
w
−C

∑̀
n=1

[tn ln yn + (1− tn) ln(1− yn)] + ‖w‖2

• Prevents overfitting.

• Equivalent to the inclusion of a prior and finding a MAP
solution for W .
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Stochastic gradient descent

•

min
w

Q(w) = min
w

n∑
i=1

Qi(w)

• Batch gradient descent:

w (τ+1) = w (τ) − α∇Q(w) = w (τ) − α
n∑

i=1

∇Qi(w)

• on-line gradient descent:

w (τ+1) = w (τ) − α∇Qi(w)
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González

Ph.D.

Introduction

The
perceptron

Logistic
regression

Logistic
regression
optimization

Stochastic gradient descent

•

min
w

Q(w) = min
w

n∑
i=1

Qi(w)

• Batch gradient descent:

w (τ+1) = w (τ) − α∇Q(w) = w (τ) − α
n∑

i=1

∇Qi(w)

• on-line gradient descent:

w (τ+1) = w (τ) − α∇Qi(w)



Linear
Classification

Models

Fabio A.
González
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