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Observation and analysis
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Introduction

The fourth paradigm

Emergence of a Fourth Research Paradigm

1. Thousand years ago — Experimental Science
—  Description of natural phenomena

2.  Last few hundred years — Theoretical Science
—  Newton's Laws, Maxwell's Equations...

3. Last few decades — Computational Science

—  Simulation of complex phenomeana - E
4. Today — Data-Intensive Science 2 @- z
—  Scientists overwhelmed with data sets ) “
frorn many different sources
= Data captured by instruments .-
= Data generated by simulations
=] Data generated by sensor networks

»  eScience is the set of tools and technologies
to support data federation and collaboration
3] For analysis and data mining
S| For data visualization and exploration
= For scholarly communication and dissemination
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What's machine learning
History

Supervised learning
Non-supervised learning

Machine learning

Machine Learning

@ Construction and study of systems that can learn from data

@ Main problem: to find patterns, relationships, regularities
among data, which allow to build descriptive and predictive
models.

@ Related fields:

Statistics

Pattern recognition and computer vision
Data mining and knowledge discovery
Data analytics
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What's machine learning
History

Supervised learning
Non-supervised learning

Machine learning

Brief history

Fisher's linear discriminant (Fisher, 1936)

Artificial neuron model (MCCulloch and Pitts, 1943)
Perceptron (Rosenblatt, 1957) (Minsky&Papert, 1969)
Probably approximately correct learning (Valiant, 1984)

e 6 6 o o

Multilayer perceptron and back propagation (Rumelhart et al.,
1986)

Decision trees (Quinlan, 1987)

Bayesian networks (Pearl, 1988)

Support vector machines (Cortes&Vapnik, 1995)

Efficient MLP learning, deep learning (Hinton et al., 2007)

e 6 o6 o
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Supervised learning
Non-supervised learning

Machine learning

Machine Learning in the news
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artificial intelligence. It could also get pretty creepy.
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Computer scientists and electrical engineers are devising a
useful new patterns in data produced by medical sensors.
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Supervised learning

o Fundamental problem:
to find a function that
relates a set of inputs
with a set of outputs

@ Typical problems:

o Classification
o Regression
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Machine learning

Supervised learning

@ Fundamental problem:
to find a function that
relates a set of inputs
with a set of outputs

@ Typical problems:

o Classification
o Regression
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What's machine learning
History
Supervised learning

Machine learning

Non-supervised learning

Non-supervised learning

@ There are not labels for the
training samples

@ Fundamental problem: to find
the subjacent structure of a
training data set

@ Typical problems: clustering,
segmentation, dimensionality
reduction, latent topic analysis

@ Some samples may have labels,
in that case it is called
semi-supervised learning
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Machine learning

Non-supervised learning

@ There are not labels for the
training samples

@ Fundamental problem: to find
the subjacent structure of a
training data set

@ Typical problems: clustering,
segmentation, dimensionality
reduction, latent topic analysis

@ Some samples may have labels,
in that case it is called
semi-supervised learning
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Model learning

Model evaluation
Feature extraction
Model application

The machine learning process

The machine Learning process

Pre%r:;:tesrzmg/ ‘ Model ‘ Model
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:Prediction
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Application ‘ Class 2
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Model learning
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Feature on

The machine learning process By
g P Model application

Model learning

Preprocessing/ Model
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Model learning
Model evaluation
Feature extraction

The machine learning process By
g P Model application

Model induction from data

@ Learning is an ill-posed problem (more than one possible
solution for the same particular problem, solutions are
sensitive to small changes on the problem)

@ It is necessary to make additional assumptions about the kind
of pattern that we want to learn

o Hypothesis space: set of valid patterns that can be learnt by
the learning algorithm

@ Occam’s razor: "All things being equal, the simplest solution
tends to be the best one.”
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Model learning
Model evaluation
Feature extraction

The machine learning process By
g P Model application

Approaches to learning

@ Probabilistic:

o Generative models: model P(Y, X)
o Discriminative models: model P(Y|X)

@ Geometrical:

e Manifold learning: model the geometry of the space where the
data lives
e Max margin learning: model the separation between the classes

@ Optimization:

o Energy/loss/risk minimization
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Model learning
Model evaluation
Feature extraction

The machine learning process By
g P Model application

Learning as optimization

@ General optimization problem:

with H:hypothesis space, D:training data, L:loss/error
e Example, logistic regression:

e Hypothesis space:

o Cross-entropy error:
E(w) = —Inp(tjw) = Z [taIny, + (1 — ) In(Lompym)]
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Model learning
Model evaluation
Feature extraction

The machine learning process By
g P Model application

Methods

@ Supervised generative: @ Non-supervised generative:
o Naive Bayes o Latent semantic analysis
e Graphical models e Latent Dirichlet allocation
e Markov random fields o Gaussian mixtures

e Hidden markov models . .
@ non-supervised geometrical:

@ Supervised discriminative: K
o k-means
o Logistic regression o PCA
e Ridge regression e Manifold learning

o Conditional random fields o Other

@ Supervised geometrical o Neural networks (deep
e Max margin classification learning)
(SVM) o Decision tress
o k-nearest neighbors e Association rules
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Model learning
Model evaluation
. . Feature extraction
The machine learning process By
Model application

Methods
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Model learning
Model evaluation
Feature extraction

The machine learning process By
g P Model application

Strategies

Optimization (non-linear, convex, etc)

Stochastic gradient descent

Kernel methods

Maximum likelihood estimation

Maximum a posteriori estimation

Bayesian estimation (variational learning, Gaussian processes)
Expectation maximization

Maximum entropy models

Sampling (Markov Chain Monte Carlo, particle filtering)
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The machine learning process By
g P Model application
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Model evaluation
Feature extraction

The machine learning process By
g P Model application

Training error vs
generalization error

@ Training error:

@ Generalization error:
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Model learning

Model evaluation
Feature extraction
Model application

The machine learning process

Cross validation

Average Square Error (Gini index)
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Model learning
Model evaluation
Feature extraction

The machine learning process By
gPp Model application

Overfitting and underfitting
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The machine learning process By
g P Model application

Regularization

original objective function regularizer
£
. it
min —CD _[talnyn+ (1 —ts) In(1 — ya)]
n=1

@ Controls the complexity of a learned model

@ Usually, the regularization term corresponds to a norm of the
parameter vector (L; or Ly the most common)

@ In some cases, it is equivalent to the inclusion of a prior and
finding a MAP solution.

Fabio Gonzdlez, PhD An Introduction to Machine Learning



Model learning
Model evaluation
Feature extraction
Model application

The machine learning process

Feature extraction

Training

Model * Model
Learning Evaluation

Model
Application
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Model learning
Model evaluation
Feature extraction

The machine learning process i
g P Model application

Features

Features represent our prior knowledge of the problem

Depend on the type of data

Specialized features for practically any kind of data (images,
video, sound, speech, text, web pages, etc)

@ Medical imaging:

o Standard computer vision features (color, shape, texture,

edges, local-global, etc)
e Specialized features tailored to the problem at hand

New trend: learning features from data
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Model learning
Model evaluation
. . Feature extraction

The machine learning process i
Model application

Feature learning
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Model learning
odel evaluation
eature extraction

Model application

The machine learning process

Unsupervised feature learning

hyyp(x)

LayerL, Layer Ly

Layer L,
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ture extraction
del application

AMIDA-MICCAI 2013 Challenge

The machine learning process
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0.353 0.291 0.319

0.186 0.263 0.218

0.139 0.490 0.217
SHEFFIELD/SURREY 0.119 0.107 0.113
SEOUL 0.032 0.630 0.061
0.011 0.685 0.022
INI-JENA 0.007 0.077 0.013
0.002 0.049 0.003
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Model application
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Model learning
Model evaluation
Feature extraction

The machine learning process Model application

High-throughput data analytics

Large scale machine learning (big-data):

o Large number of samples
o Large samples (whole-slide images, 4D high-resolution
volumes)

Scalable learning algorithms (on-line learning)

Distributed computing architectures (Hadoop, Spark)

GPGPU computing and multicore architectures

Fabio Gonzdlez, PhD An Introduction to Machine Learning



Model lear mng
Model

The machine learning process

Questions?

fagonzalezo@unal.edu.co

http://www.mindlaboratory.org
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