
Assignment 3: Probabilistic Reasoning
Submission: Wednesday May 3rd
Groups of maximum 2 students

Prof. Fabio A. González

Intelligent Systems - 2017-I

Maestŕıa en Ing. de Sistemas y Computación

1. (2.5) Bayes’ net inference

Consider the following Pacman maze:

The Pacman can sense his environment through four sensors that tell him if there is a wall,
or not, north, south, east or west of his position. The Pacman knows the configuration of
the maze but, in general, he does not know his position in it. He must determine it from his
perceptions. However, the perceptions are not perfect, sometimes the reading from a sensor
may be erroneous with an 0 ≤ ε < 1 probability. To model this situation we will use the
following random variables:

• X ∈ R2: the Pacman position.

• EN , ES , EE , EW ∈ {0, 1}: the Pacman perceptions.

(a) Build a Bayes’ net that represent the relationships between the random variables. Based
on it, write an expression for the joint probability distribution of all the variables.

(b) Assuming an uniform distribution for the Pacman position probability, write functions
to calculate the following probabilities:

i. P (X = x|EN = eN , ES = eS)

ii. P (EE = eE |EN = eN , ES = ES)

iii. P (S), where S ⊆ {eN , eS , eE , eW }
(c) Now we will consider a scenario where the Pacman moves a finite number of steps n. In

this case we have n different variables for the positions X1, . . . , Xn, as well as for each one
of the perceptions, e.g. EN1 , . . . , ENn for the north perception. For the initial Pacman
position, assume an uniform distribution among the valid positions. Also assume that
at each time step the Pacman choses, to move to, one of the valid neighbor positions
with uniform probability. Draw the corresponding Bayes’ net for n = 4.



(d) Write functions to calculate the following probabilities:

i. P (X4 = x4|E1 = e1, E3 = e3)

ii. P (X2 = x2|E2 = e2, E3 = e3, E4 = e4)

iii. P (E4 = e4|E1 = e1, E2 = e2, E3 = e3)

iv. P (EE2 = eE2 |EN2 = eN2 , ES2 = ES2)

where Ei and ei correspond to (ENi , ESi , EEi , EWi) and (eNi , eSi , eEi , eWi) respectively.

(e) The solution has to be reported in an IPython notebook following the format and instruc-
tions in the notebook in https://github.com/fagonzalezo/is-2017-1/blob/master/

assign3.ipynb.

2. (2.5) Pacman localization problem

This problem is based on the search problems posed in the Project 5 of [AI-edX]. However,
instead of inferring the position of the ghosts, we need to infer the position of the Pacman
based on perceptions. The situation is similar the one described in question 1; however, here
we need to use probabilistic reasoning over time, i.e., hidden Markov models.

To start, download and uncompress the file in http://fagonzalezo.github.io/is-2017-1/

blindPacman.zip.

(a) First, you have to make the Pacman able to sense his environment. His sensors work as
discussed in question 1. You must implement the function getObservationDistribu-

tionNoisyWall in busters.py to calculate P (noisyWall | truePerception).

(b) You have to make the Pacman able to calculate his beliefs about his position based on
his perceptions. You must implement the methods initializeUniformly and observe

of the class ExactInference in inference.py.

(c) Now, you have to make the Pacman able to take the time into account to update is
belief. You must implement the method elapseTime of the class ExactInference in
inference.py.

https://github.com/fagonzalezo/is-2017-1/blob/master/assign3.ipynb
https://github.com/fagonzalezo/is-2017-1/blob/master/assign3.ipynb
http://fagonzalezo.github.io/is-2017-1/blindPacman.zip
http://fagonzalezo.github.io/is-2017-1/blindPacman.zip


(d) In this step, you will implement a strategy for Pacman that takes into account the
beliefs he calculates. To do so, You must implement the method chooseAction of the
class BustersAgent in bustersAgents.py. The process to choose the actions is the
following:

i. Given de belief distribution choose the position with the maximum probability. If
there is a draw choose the position with the maximum position according to lexico-
graphic order (x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 ∨ (x1 = x2 ∧ y1 ≤ y2). Tip: use the
method argMax of the class Counter in util.py.

ii. From this position, choose the action that brings you closer to the ghost, i.e., the
position with the minimum distance, in terms of the number of steps in the maze,
to the position of the ghost. Take into account that the ghosts does not move and
always stays in the same position ((1, 3)).

(e) In this question, and the following, you will use approximate inference based on particle
filtering. Implement the methods initializeUniformly, getBeliefDistribution and
observe of the class ParticleFiltering in inference.py.

(f) Implement the method elapseTime of the class ParticleFiltering in inference.py.

To visualize your implementation in action you can use the following command for the agent
using exact inference:

python autograder.py -t test_cases/q3/3-gameScoreTest

And the following command for the approximate inference agent:

python autograder.py -t test_cases/q5/3-gameScoreTest

Evaluate your solution using the following grader:

python autograder.py

The assignment must be submitted as a compressed file containing the files (and ONLY these
files): assign3.ipynb, inference.py, busters.py and bustersAgents.py through the follow-
ing Dropbox file request, before midnight of the deadline date. The file must be named as is-

assign3-unalusername1-unalusername2.zip, where unalusername is the user name assigned by
the university (include the usernames of all the members of the group).

References

[Russell10] Russell, S y Norvig, P. 2010 Artificial Intelligence: a Modern Approach, 3rd Ed,
Prentice-Hall

[AI-edX] CS188x 1 Artificial Intelligence, UC Berkley, edX, Springer 2016, https://edge.edx.
org/courses/course-v1:BerkeleyX+CS188x-SP16+SP16/.

https://www.dropbox.com/request/LZaz6tIgBkbpHqDRGQZJ
https://edge.edx.org/courses/course-v1:BerkeleyX+CS188x-SP16+SP16/
https://edge.edx.org/courses/course-v1:BerkeleyX+CS188x-SP16+SP16/

