> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Learning Techniques

An Introduction to Machine Learning

Fabio A. González Ph.D.

Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá

August 9, 2016

Content

Introduction

González Ph.D.

An Introduction

to Machine Learning Fabio A.

Example How to State the Learning Problem? How to Solve the Learning Problem?

2 Patterns and Generalization

Generalizing from patterns Overfitting/ Overlearning How to Measure the Quality of a Solution?

3 Learning Problems

Supervised Non-supervised Active On-line

4 Learning Techniques

> Fabio A. González Ph.D.

Introduction

Example

How to State the Learning Problem

How to Solve the Learning Problem

Patterns and Generalization

Learning Problems

Learning Techniques

Two class classification problem

> Fabio A. González Ph.D.

Introduction

Example

How to State the Learning Problem?

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

How to solve it?

• We need to build a prediction function $f:\mathbb{R}^2\to\mathbb{R}$ such that::

Prediction
$$(x, y) = \begin{cases} C_1 & \text{si } f(x, y) \ge 0\\ C_2 & \text{si } f(x, y) < 0 \end{cases}$$

• Training set:
$$D = \{((x_1, y_1), l_1), \dots, ((x_n, y_n), l_n)\}$$

- Example: $D = \{((1,2),-1), ((1,3),-1), ((3,1),1), \dots \}$
- Loss function:

$$L(f, D) = \sum_{(x_i, y_i, l_i) \in D} \frac{|\text{sign}(f(x_i, y_i)) - l_i|}{2}$$

Fabio A. González Ph.D.

Introduction

Exampl

How to State the Learning Problem?

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

L_1 Error loss

$$f(x, y) = w_1 x + w_0 y$$
$$L(f, D) = \frac{1}{2} \sum_{(x_i, y_i, l_i) \in D} |f(x_i, y_i)| - l_i|$$

• Are there other alternative loss functions?

> Fabio A. González Ph.D.

Introduction

Exampl

How to State the Learning Problem?

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Square error loss

$$f(x, y) = w_1 x + w_0 y$$
$$L(f, D) = \frac{1}{2} \sum_{(x_i, y_i, l_i) \in D} (f(x_i, y_i)) - l_i)^2$$

> Fabio A. González Ph.D.

Introduction

Example

How to State the Learning Problem?

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Learning as optimization

• General optimization problem:

 $\min_{f \in H} L(f, D)$

• Two Class 2D classification using linear functions:

 $H = \{f : f(x, y) = w_2 x + w_1 y + w_0, \forall w_0, w_1, w_2 \in \mathbb{R}\}\$

$$\min_{f \in H} L(f, D) = \min_{W \in \mathbb{R}^3} \frac{1}{2} \sum_{(x_i, y_i) \in D} (w_2 x_i + w_1 y_i + w_0 - l_i)^2$$

Fabio A. González Ph.D.

Introduction

Exampl

How to State the Learning Problem?

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Hypothesis space

Gradient descent

An Introduction to Machine Learning

> Fabio A. González Ph.D.

Introduction

Example How to State the Learning Problem

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Iterative optimization of the loss function:

 $\begin{array}{ll} \text{initialize} & W^0 = w_0, w_1, w_2 \\ k \leftarrow 0 \\ \text{repeat} \\ & k \leftarrow k+1 \\ & W^k \leftarrow W^{k-1} - \eta(k) \nabla L(f_{W^{k-1}}, S) \\ \text{until} & |\eta(k) \nabla L(f_{W^{k-1}}, S)| < \Theta \end{array}$

> Fabio A. González Ph.D.

Introduction

Example How to State the Learning Problem

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Gradient descent iteration example (1)

> Fabio A. González Ph.D.

Introduction

Example How to State the Learning Problem

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

Gradient descent iteration example (2)

Non-separable data

An Introduction to Machine Learning

> Fabio A. González Ph.D.

Introduction

Example How to State the Learning Problem

How to Solve the Learning Problem?

Patterns and Generalization

Learning Problems

Learning Techniques

> Fabio A. González

What is a pattern?

Ph.D.

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

- Data regularities
- Data relationships
- Redundancy
- Generative model

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

Learning a boolean function

x_1	x_2	f_1	f_2	 f_{16}
0	0	0	0	 1
0	1	0	0	 1
1	0	0	0	 1
1	1	0	1	 1

- How many Boolean functions of n variables are?
- How many candidate functions are removed by a sample?
- Is it possible to generalize?

Inductive bias

An Introduction to Machine Learning

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

- In general, the learning problem is *ill-posed* (more than one possible solution for the same particular problem, solutions are sensitive to small changes on the problem)
- It is necessary to make additional assumptions about the kind of pattern that we want to learn
- **Hypothesis space**: set of valid patterns that can be learnt by the algorithm

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

What is a good pattern?

What is a good pattern?

An Introduction to Machine Learning

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure th Quality of a Solution?

Learning Problems

Learning Techniques

Occam's razor

Fabio A. González Ph.D.

An Introduction

to Machine Learning

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

from Wikipedia:

Occam's razor (also spelled Ockham's razor) is a principle attributed to the 14th-century English logician and Franciscan friar William of Ockham. The principle states that the explanation of any phenomenon should make as few assumptions as possible, eliminating, or "shaving off", those that make no difference in the observable predictions of the explanatory hypothesis or theory. The principle is often expressed in Latin as the *lex parsimoniae* (law of succinctness or parsimony).

"All things being equal, the simplest solution tends to be the best one."

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

Training error vs generalization error

- The loss function measures the error in the training set
- Is this a good measure of the quality of the solution? Average Square Error (Gini index)

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

Over-fitting and under-fitting

Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

Generalization error

• Generalization error:

 $E[(L(f_w, S)]$

- How to control the generalization error during training?
 - Cross validation
 - Regularization

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Generalizing from patterns

Overfitting/ Overlearning

How to Measure the Quality of a Solution?

Learning Problems

Learning Techniques

Regularization

• Vapnik, 1995:

$$R(\alpha) = \int \frac{1}{2} |y - f(\mathbf{x}, \alpha)| dP(\mathbf{x}, y)$$

$$R_{emp}(\alpha) = \frac{1}{2l} \sum_{i=1}^{l} |y_i - f(\mathbf{x}_i, \alpha)|.$$

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\left(\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}\right)}$$

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Supervised Non-supervised Active On-line

Learning Technique

• Supervised learning

- Non-supervised learning
- Semi-supervised learning
- Active/reinforcement learning
- On-line learning

Types

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Supervised

Non-supervised Active On-line

Learning Techniques

Fundamental

problem: to find a function that relates a set of inputs with a set of outputs

- Typical problems:
 - Classification
 - Regression

Supervised learning

Fabio A. González Ph.D.

Non-supervised

Topics

gene

life

brain

nerve

data

dna

Documents

Topic proportions and assianments

Non-supervised learning

Fabio A. González Ph.D.

Introduction

Patterns and Generalization

- Learning Problems
- Supervised
- Non-supervised
- Active On-line
- Learning Techniques

- There are not labels for the training samples
- Fundamental problem: to find the subjacent structure of a training data set
- Typical problems: clustering, probability density estimation, dimensionality reduction, latent topic analysis, data compression
- Some samples may have labels, in that case it is called semi-supervised learning

Non-supervised learning

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Supervised

Non-supervised

Active

Learning Technique

Active/reinforcement learning

- Generally, it happens in the context of an agent acting in an environment
- The agent is not told whether it has make the right decision or not
- The agent is punished or rewarded (not necessarily in an immediate way)
- Fundamental problem: to define a policy that allows to maximize the positive stimulus (reward)

https://www.youtube.com/watch?v=iqXKQf2BOSE

> Fabio A. González

On-line learning

Ph.D.

Patterns and Generalization

Learning Problems

Supervised

Non-supervise

On-line

Learning Techniques

- Only one pass through the data
 - big data volume
 - real time
- It may be supervised or unsupervised
- Fundamental problem: to extract the maximum information from data with minimum number of passes

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Learning Techniques

Representative techniques

- Computational
 - Decision trees
 - Nearest-neighbor classification
 - Graph-based clustering
 - Association rules
- Statistical
 - Multivariate regression
 - Linear discriminant analysis
 - Bayesian decision theory
 - Bayesian networks
 - K-means

- Computational-Statistical
 - SVM
 - AdaBoost
- Bio-inspired
 - Neural networks
 - Genetic algorithms
 - Artificial immune systems

> Fabio A. González Ph.D.

Introduction

Patterns and Generalization

Learning Problems

Learning Techniques Alpaydin, E. 2010 Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press. (Chap 1,2)