Introduction

The Kerne Trick

Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Introduction to Kernel Methods

Fabio A. González Ph.D.

Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá

September 11, 2015

Introduction

The Kerne

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Outline

- 1 Introduction Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm Primal linear regression Dual linear regression
- 5 Kernel Functions

 Mathematical characterisation

 Visualizing kernels in input space
- 6 Kernel Algorithms
- **7** Kernels in Complex Structured Data

A Kernel Pattern Analysis Algorithn

Kernel Functions

Algorithms

Kernels in

Kernels in Complex Structured Data

Outline

1 Introduction

Motivation

2 The Kernel Trick

Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm Primal linear regression Dual linear regression
- **5** Kernel Functions

Mathematical characterisation Visualizing kernels in input space

- 6 Kernel Algorithms
- 7 Kernels in Complex Structured Data

Introduction

The Kern

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Algorithms

Kernels in

Kernels in Complex Structured Data

Outline

Introduction Motivation

- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- Kernel Functions
 Mathematical characterisation
 Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

Introduction

Motivation

The Kern

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

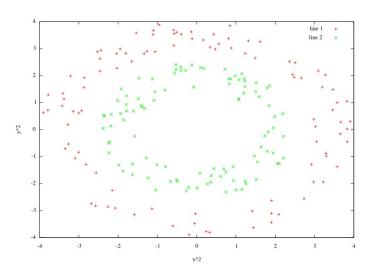
Kernel Function

Algorithms

Kernels in Complex Structured Data

Problem 1

How to separate these two classes using a linear function?



Problem 2

Kernel Algorithms

Kernels in Complex Structured

How to do symbolic regression?

$$\Sigma = \{A,\,C,\,G,\,T\}$$

$$\begin{array}{ccccc} f: & \Sigma^d & \rightarrow & \mathbb{R} \\ & ACGTA & \mapsto & 10.0 \\ & GTCCA & \mapsto & 11.3 \\ & GGTAC & \mapsto & 1.0 \\ & CCTGA & \mapsto & 4.5 \\ & \vdots & \vdots & \vdots \end{array}$$

Introduction

The Kernel

space to the featu space Calculating the do

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Functions Kernel

Kernels in Complex Structured

Outline

1 Introduction
Motivation

2 The Kernel Trick

Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm Primal linear regression Dual linear regression
- Kernel Functions
 Mathematical characterisation
 Visualizing kernels in input space
- **6** Kernel Algorithms
- **7** Kernels in Complex Structured Data

Calculating the de product in the feature space

Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Functions

Kernel Algorithms

Kernels in Complex Structured Data

Outline

1 Introduction
Motivation

2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

Introductio

The Kerne

Mapping the input space to the feature space

Calculating the de product in the feature space

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

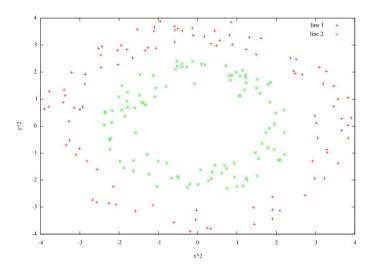
Kernel Functions

Kernel Algorithms

Kernels in Complex Structured Data

Problem 1

• How to separate these two classes using a linear function?



Calculating the opposition of the feature space

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

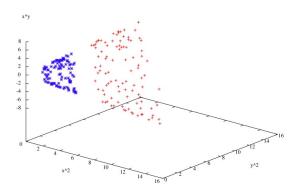
Kernel Algorithms

Kernels in Complex Structured Data

Solution

• Map to \mathbb{R}^3 :

$$\begin{array}{ccc} \phi: \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (x^2,y^2,xy) \end{array}$$



Calculating the d product in the feature space

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

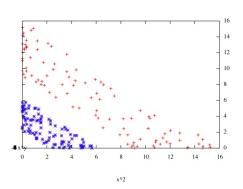
Kernel Algorithms

Kernels in Complex Structured Data

Solution

• Map to \mathbb{R}^3 :

$$\begin{array}{ccc} \phi: \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (x^2,y^2,xy) \end{array}$$



y^2

Introductio

The Kerne

Mapping the input space to the feature space

Calculating the d

The Kernel Approach t Machine

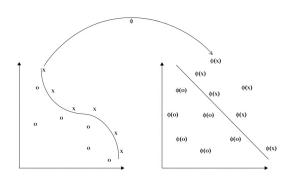
A Kernel Pattern Analysis

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured

Input space vs. feature space



space to the feature space Calculating the dot

Calculating the de product in the feature space

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured Data

Outline

1 Introduction
Motivation

2 The Kernel Trick

Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm Primal linear regression Dual linear regression
- Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

Introduction

The Kerne

space to the featu

Calculating the dot product in the feature space

The Kernel Approach to Machine

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured Data

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3
(x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\langle \phi(x), \phi(z) \rangle = \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2z_1z_2$$

$$= (x_1z_1 + x_2z_2)^2$$

$$= \langle x, z \rangle^2$$

- A function $k: X \times X \to \mathbb{R}$ such that $k(x,z) = \langle \phi(x), \phi(z) \rangle$ is called a kernel
- Morale: you don't need to apply ϕ explicitly to calculate the dot product in the feature space!

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

$$\langle \phi(x), \phi(z) \rangle = \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2z_1z_2$$

$$= (x_1z_1 + x_2z_2)^2$$

$$= \langle x, z \rangle^2$$

- A function $k: X \times X \to \mathbb{R}$ such that $k(x,z) = \langle \phi(x), \phi(z) \rangle$ is called a kerne
- Morale: you don't need to apply ϕ explicitly to calculate the dot product in the feature space!

Kernels in Complex Structured Data

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

$$\langle \phi(x), \phi(z) \rangle = \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= \langle x, z \rangle^2$$

- A function $k: X \times X \to \mathbb{R}$ such that $k(x,z) = \langle \phi(x), \phi(z) \rangle$ is called a kernel
- Morale: you don't need to apply ϕ explicitly to calculate the dot product in the feature space!

Kernels in Complex Structured Data

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

$$\langle \phi(x), \phi(z) \rangle = \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2z_1z_2$$

$$= (x_1z_1 + x_2z_2)^2$$

$$= \langle x, z \rangle^2$$

- A function $k: X \times X \to \mathbb{R}$ such that $k(x, z) = \langle \phi(x), \phi(z) \rangle$ is called a kernel
- Morale: you don't need to apply ϕ explicitly to calculate the dot product in the feature space!

space to the feat space

Calculating the dot product in the feature space

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured Data

Kernel induced feature space

The feature space induced by the kernel is not unique:
 The kernel

$$k(x,z) = \langle x, z \rangle^2$$

also calculates the dot product in the four dimensional feature space:

$$\phi: \mathbb{R}^2 \to \mathbb{R}^4$$

 $(x_1, x_2) \mapsto (x_1^2, x_2^2, x_1 x_2, x_2 x_1)$

• The example can be generalised to \mathbb{R}^n

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured Data

Kernel induced feature space

The feature space induced by the kernel is not unique:
 The kernel

$$k(x,z) = \langle x, z \rangle^2$$

also calculates the dot product in the four dimensional feature space:

$$\phi : \mathbb{R}^2 \to \mathbb{R}^4$$

 $(x_1, x_2) \mapsto (x_1^2, x_2^2, x_1 x_2, x_2 x_1)$

• The example can be generalised to \mathbb{R}^n

Introduction

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithm

Kernels in Complex Structured Data

Outline

- 1 Introduction
 Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- 6 Kernel Algorithms
- 7 Kernels in Complex Structured Data

The Kernel Approach to Machine Learning

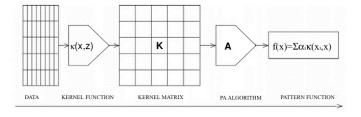
A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

The Process



A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

- Data items are embedded into a vector space called the feature space
- Linear relations are sought among the images of the data items in the feature space
- The pattern analysis algorithm are based only on the pairwise dot products, they do not need the actual coordinates of the embedded points
- The pairwise dot products in the feature space could be efficiently calculated using a kernel function

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

- Data items are embedded into a vector space called the feature space
- Linear relations are sought among the images of the data items in the feature space
- The pattern analysis algorithm are based only on the pairwise dot products, they do not need the actual coordinates of the embedded points
- The pairwise dot products in the feature space could be efficiently calculated using a kernel function

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

- Data items are embedded into a vector space called the feature space
- Linear relations are sought among the images of the data items in the feature space
- The pattern analysis algorithm are based only on the pairwise dot products, they do not need the actual coordinates of the embedded points
- The pairwise dot products in the feature space could be efficiently calculated using a kernel function

Machine Learning

A Kernel
Pattern

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

- Data items are embedded into a vector space called the feature space
- Linear relations are sought among the images of the data items in the feature space
- The pattern analysis algorithm are based only on the pairwise dot products, they do not need the actual coordinates of the embedded points
- The pairwise dot products in the feature space could be efficiently calculated using a kernel function

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regress

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Outline

- 1 Introduction
 Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm

Primal linear regression Dual linear regression

- 5 Kernel Functions
 Mathematical character
 - Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Outline

- 1 Introduction
 Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regres

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Problem definition

• Given a training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}$ of points $\mathbf{x}_i \in \mathbb{R}^n$ with corresponding labels $y_i \in \mathbb{R}$ the problem is to find a real-valued linear function that best interpolates the training set:

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}' \mathbf{x} = \sum_{i=1}^{n} w_i x_i$$

• If the data points were generated by a function like g(x), it is possible to find the parameters w by solving

$$Xw = y$$

where

$$\mathbf{X} = \begin{bmatrix} \mathbf{x'}_1 \\ \vdots \\ \mathbf{x'}_l \end{bmatrix}$$

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regres

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Problem definition

• Given a training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}$ of points $\mathbf{x}_i \in \mathbb{R}^n$ with corresponding labels $y_i \in \mathbb{R}$ the problem is to find a real-valued linear function that best interpolates the training set:

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}' \mathbf{x} = \sum_{i=1}^{n} w_i x_i$$

• If the data points were generated by a function like g(x), it is possible to find the parameters w by solving

$$Xw = y$$

where

$$\mathbf{X} = \left[\begin{array}{c} \mathbf{x}'_1 \\ \vdots \\ \mathbf{x}'_l \end{array} \right]$$

Introductio

The Kerne

The Kerne Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

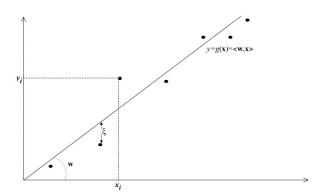
Dual linear regress

Kernel

Kernel

Kernels in Complex Structured

Graphical representation



Introduction

The Kerne

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regress

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Loss function

Minimize

$$\mathcal{L}(g, S) = \mathcal{L}(\mathbf{w}, S) = \sum_{i=1}^{l} (y_i - g(x_i))^2 = \sum_{i=1}^{l} \xi_i^2$$
$$= \sum_{i=1}^{l} \mathcal{L}(g, (\mathbf{x}_i, y_i))$$

This could be written as

$$\mathcal{L}(w, S) = ||\xi||^2 = (y - Xw)'(y - Xw)$$

Optimization problem:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}, S) = \min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w})$$

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regres

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Loss function

Minimize

$$\mathcal{L}(g, S) = \mathcal{L}(\mathbf{w}, S) = \sum_{i=1}^{l} (y_i - g(x_i))^2 = \sum_{i=1}^{l} \xi_i^2$$
$$= \sum_{i=1}^{l} \mathcal{L}(g, (\mathbf{x}_i, y_i))$$

• This could be written as

$$\mathcal{L}(w, S) = ||\xi||^2 = (y - Xw)'(y - Xw)$$

Optimization problem:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}, S) = \min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w})$$

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regres

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Loss function

Minimize

$$\mathcal{L}(g, S) = \mathcal{L}(\mathbf{w}, S) = \sum_{i=1}^{l} (y_i - g(x_i))^2 = \sum_{i=1}^{l} \xi_i^2$$
$$= \sum_{i=1}^{l} \mathcal{L}(g, (\mathbf{x}_i, y_i))$$

This could be written as

$$\mathcal{L}(w, S) = ||\xi||^2 = (y - Xw)'(y - Xw)$$

Optimization problem:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}, S) = \min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Introduction

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regress

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured

$$\frac{\partial \mathcal{L}(\mathbf{w},S)}{\partial \mathbf{w}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{w} = 0,$$

therefore

$$X'Xw = X'y,$$

and

$$w = (X'X)^{-1}X'y$$

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Dual linear regression

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

Outline

1 Introduction
Motivation

2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Primal lin

Dual linear regression

Kernel

Kernel Algorithm

Kernels in Complex Structured

Dual representation of the problem

•
$$w = (X'X)^{-1}X'y = X'X(X'X)^{-2}X'y = X'\alpha$$

• So, w is a linear combination of the training samples, $\mathbf{w} = \sum_{i=1}^{l} \alpha_i \mathbf{x}_i$.

A Kernel Pattern Analysis

Primal lin

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Dual representation of the problem

•
$$w = (X'X)^{-1}X'y = X'X(X'X)^{-2}X'y = X'\alpha$$

• So, w is a linear combination of the training samples, $\mathbf{w} = \sum_{i=1}^{l} \alpha_i \mathbf{x}_i$.

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw = X'y,$$

then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

• then

$$\alpha = (XX')^{-1}y,$$

and

$$g(x) = w'x = \alpha'Xx.$$

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw = X'y,$$

then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

then

$$\alpha = (XX')^{-1}y,$$

and

$$g(\mathbf{x}) = \mathbf{w}'\mathbf{x} = \alpha'\mathbf{X}\mathbf{x}.$$

Introduction

The Kerne

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linea

Dual linear regression

Kernel

Kernel Algorithm

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw = X'y,$$

• then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

then

$$\alpha = (XX')^{-1}y,$$

and

$$g(\mathbf{x}) = \mathbf{w}'\mathbf{x} = \alpha'\mathbf{X}\mathbf{x}.$$

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw = X'y,$$

• then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

then

$$\alpha = (XX')^{-1}y,$$

and

$$g(\mathbf{x}) = \mathbf{w}'\mathbf{x} = \alpha'\mathbf{X}\mathbf{x}.$$

Primal line

Dual linear regression

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw = X'y,$$

• then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

then

$$\alpha = (XX')^{-1}y,$$

and

$$g(x) = w'x = \alpha'Xx.$$

Kernels in Complex Structured Data

Solution

• From the solution of the primal problem:

$$X'Xw=X'y,$$

• then

$$XX'Xw = XX'y,$$

using the dual representation

$$XX'XX'\alpha = XX'y,$$

then

$$\alpha = (XX')^{-1}y,$$

and

$$g(x) = w'x = \alpha'Xx.$$

A Kernel Pattern Analysis Algorithm

Primal linear

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Ridge regression

- If XX' is singular, the pseudo-inverse could be used: to find the w that satisfies X'Xw = X'y with minimal norm.
- Optimisation problem:

$$\min_{\mathbf{w}} \mathcal{L}_{\lambda}(\mathbf{w}, S) = \min_{\mathbf{w}} \lambda \|\mathbf{w}\|^{2} + \sum_{i=1}^{l} (y_{i} - g(x_{i}))^{2},$$

where λ defines the trade-off between norm and loss. This controls the complexity of the model (the process is called *regularization*).

A Kernel Pattern Analysis Algorithm

Algorithm Primal linea

Dual linear regression

Kernel

Kernel Algorithms

Kernels in Complex Structured

Ridge regression

- If XX' is singular, the pseudo-inverse could be used: to find the w that satisfies X'Xw = X'y with minimal norm.
- Optimisation problem:

$$\min_{\mathbf{w}} \mathcal{L}_{\lambda}(\mathbf{w}, S) = \min_{\mathbf{w}} \lambda \|\mathbf{w}\|^{2} + \sum_{i=1}^{l} (y_{i} - g(x_{i}))^{2},$$

where λ defines the trade-off between norm and loss. This controls the complexity of the model (the process is called *regularization*).

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data • Taking the derivative and making it equal to zero:

$$X'Xw + \lambda w = (X'X + \lambda I_n)w = X'y,$$

where I_n is an identity matrix of $n \times n$ dimension,

• then,

$$w = (X'X + \lambda I_n)^{-1}X'y.$$

• In terms of α :

$$w = \lambda^{-1}X'(y - Xw) = X'\alpha,$$

$$\alpha = \lambda^{-1}(y - Xw) = (XX' + \lambda I_l)^{-1}y.$$

Dual linear regression

Taking the derivative and making it equal to zero:

$$X'Xw + \lambda w = (X'X + \lambda I_n)w = X'y,$$

where I_n is an identity matrix of $n \times n$ dimension,

then,

$$w = (X'X + \lambda I_n)^{-1}X'y.$$

• In terms of α :

$$w = \lambda^{-1}X'(y - Xw) = X'\alpha,$$

$$\alpha = \lambda^{-1}(y - Xw) = (XX' + \lambda I_l)^{-1}y.$$

Kernels in Complex Structured • Taking the derivative and making it equal to zero:

$$X'Xw + \lambda w = (X'X + \lambda I_n)w = X'y,$$

where I_n is an identity matrix of $n \times n$ dimension,

then,

$$w = (X'X + \lambda I_n)^{-1}X'y.$$

• In terms of α :

$$w = \lambda^{-1} X'(y - Xw) = X'\alpha,$$

$$\alpha = \lambda^{-1}(y - Xw) = (XX' + \lambda I_l)^{-1}y.$$

Dual linear regression

Taking the derivative and making it equal to zero:

$$X'Xw + \lambda w = (X'X + \lambda I_n)w = X'y,$$

where I_n is an identity matrix of $n \times n$ dimension,

then,

$$w = (X'X + \lambda I_n)^{-1}X'y.$$

• In terms of α :

$$w = \lambda^{-1} X'(y - Xw) = X'\alpha,$$

$$\alpha = \lambda^{-1}(y - Xw) = (XX' + \lambda I_l)^{-1}y.$$

A Kernel Pattern Analysis

Primal linea

Dual linear regression

Kernel

Kernel

Kernels in Complex Structured

Prediction function

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \left\langle \sum_{i=1}^{l} \alpha_i \mathbf{x}_i, \mathbf{x} \right\rangle = \sum_{i=1}^{l} \alpha_i \left\langle \mathbf{x}_i, \mathbf{x} \right\rangle$$

Introductio

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal linear regression

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

Ridge regression as a kernel method

• The Gram matrix G = XX' is the matrix of dot products

$$G = XX' = \left[\begin{array}{c} x'_1 \\ \vdots \\ x'_l \end{array} \right] [x_1 \cdots x_l] = \left[\begin{array}{cc} \langle x_1, x_1 \rangle & \langle x_1, x_l \rangle \\ \\ \langle x_l, x_1 \rangle & \langle x_l, x_l \rangle \end{array} \right]$$

- G may be replaced by a general kernel matrix, K, with $k_{ii} = k(x_i, x_i) = \langle \phi(x_i), \phi(x_i) \rangle$
- The α 's are calculated as:

$$\alpha = (\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \mathbf{y}$$

$$g(\mathbf{x}) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}, \mathbf{x}_i) = y'(\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_l) \end{bmatrix}$$

Introductio

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal li

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

Ridge regression as a kernel method

• The Gram matrix G = XX' is the matrix of dot products

$$G = XX' = \begin{bmatrix} x'_1 \\ \vdots \\ x'_l \end{bmatrix} [x_1 \cdots x_l] = \begin{bmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_l \rangle \\ \langle x_l, x_1 \rangle & \langle x_l, x_l \rangle \end{bmatrix}$$

- G may be replaced by a general kernel matrix, K, with $k_{ij}=k(x_i,x_i)=<\phi(x_i),\phi(x_i)>$
- The α 's are calculated as:

$$\alpha = (\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \mathbf{y}$$

$$g(\mathbf{x}) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}, \mathbf{x}_i) = y'(\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_l) \end{bmatrix}$$

Introduction

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Primal li

Dual linear regression

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

Ridge regression as a kernel method

• The Gram matrix G = XX' is the matrix of dot products

$$G = XX' = \left[\begin{array}{c} x'_1 \\ \vdots \\ x'_l \end{array} \right] [x_1 \cdots x_l] = \left[\begin{array}{cc} \langle x_1, x_1 \rangle & \langle x_1, x_l \rangle \\ \\ \langle x_l, x_1 \rangle & \langle x_l, x_l \rangle \end{array} \right]$$

- G may be replaced by a general kernel matrix, K, with $k_{ij}=k(x_i,x_i)=<\phi(x_i),\phi(x_i)>$
- The α 's are calculated as:

$$\alpha = (K + \lambda I_l)^{-1} y$$

$$g(\mathbf{x}) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}, \mathbf{x}_i) = y'(\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_l) \end{bmatrix}$$

Dual linear regression

Ridge regression as a kernel method

• The Gram matrix G = XX' is the matrix of dot products

$$G = XX' = \left[\begin{array}{c} x'_1 \\ \vdots \\ x'_l \end{array} \right] [x_1 \cdots x_l] = \left[\begin{array}{cc} \langle x_1, x_1 \rangle & \langle x_1, x_l \rangle \\ \\ \langle x_l, x_1 \rangle & \langle x_l, x_l \rangle \end{array} \right]$$

- G may be replaced by a general kernel matrix, K, with $k_{ij} = k(x_i, x_j) = \langle \phi(x_i), \phi(x_i) \rangle$
- The α's are calculated as:

$$\alpha = (K + \lambda I_l)^{-1} y$$

$$g(\mathbf{x}) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}, \mathbf{x}_i) = y'(\mathbf{K} + \lambda \mathbf{I}_l)^{-1} \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_l) \end{bmatrix}$$

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Mathematical characterisation
Visualizing kernels i

Kernel Algorithms

Kernels ir Complex Structure Data

Outline

1 Introduction
Motivation

2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- **6** Kernel Functions

Mathematical characterisation Visualizing kernels in input space

- 6 Kernel Algorithms
- Mernels in Complex Structured Data

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Mathematical characterisation

Visualizing kernel

Kernel Algorithms

Kernels ir Complex Structure Data

Outline

- 1 Introduction
 Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

Characterisation

Theorem

(Mercer's Theorem) A function

$$k: X \times X \to \mathbb{R}$$
,

which is either continuous or has a countable domain, can be decomposed

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

into a feature map ϕ into a Hilbert space F applied to both its arguments followed by the evaluation of the inner product in Fif and only if it satisfies the finitely positive semi-definite property.

Kernels in Complex Structured

Some kernel functions

- $k(x, z) = p(k_1(x, z))$. p a polynomial with positive coefficients.
- $k(x, z) = \exp(k_1(x, z))$.
- $k(x, z) = \exp(-\|x z\|^2/(2\sigma^2))$. Gaussian kernel.
- $k(x, z) = k_1(x, z)k_2(x, z)$

Kernels ir Complex Structure

Some kernel functions

- $k(x, z) = p(k_1(x, z))$. p a polynomial with positive coefficients.
- $k(x, z) = \exp(k_1(x, z))$.
- $k(x, z) = \exp(-\|x z\|^2/(2\sigma^2))$. Gaussian kernel.
- $k(x, z) = k_1(x, z)k_2(x, z)$

A Kernel Pattern Analysis Algorithm

Kernel Function

Mathematical characterisation

Visualizing kernel

Kernel Algorithms

Kernels in Complex Structured

Some kernel functions

- $k(x, z) = p(k_1(x, z))$. p a polynomial with positive coefficients.
- $k(x, z) = \exp(k_1(x, z))$.
- $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} \mathbf{z}\|^2/(2\sigma^2))$. Gaussian kernel.
- $k(x, z) = k_1(x, z)k_2(x, z)$

Some kernel functions

- $k(x, z) = p(k_1(x, z))$. p a polynomial with positive coefficients.
- $k(x, z) = \exp(k_1(x, z)).$
- $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} \mathbf{z}\|^2/(2\sigma^2))$. Gaussian kernel.
- $\bullet k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) k_2(\mathbf{x}, \mathbf{z})$

A Kernel Pattern Analysis Algorithm

Kernel Function

Mathematical

characterisation
Visualizing kernels

Kernel Algorithm

Kernels in Complex Structured

Embeddings corresponding to kernels

- It is possible to calculate the feature space induced by a kernel (Mercer's Theorem)
- This can be done in a constructive way
- The feature space can even be of infinite dimension.

A Kernel Pattern Analysis Algorithm

Kernel Functions

Mathematical characterisation

Visualizing kernels input space

Kernel Algorithm

Kernels in Complex Structure

Embeddings corresponding to kernels

- It is possible to calculate the feature space induced by a kernel (Mercer's Theorem)
- This can be done in a constructive way
- The feature space can even be of infinite dimension.

A Kernel Pattern Analysis Algorithm

Kernel Functions

Functions Mathematical

characterisation Visualizing kernel

Kernel Algorithms

Kernels in Complex Structured

Embeddings corresponding to kernels

- It is possible to calculate the feature space induced by a kernel (Mercer's Theorem)
- This can be done in a constructive way
- The feature space can even be of infinite dimension.

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Mathematical characterisation

characterisation Visualizing kernels in input space

Kernel Algorithm

Kernels in Complex Structure Data

Outline

1 Introduction
Motivation

2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space

- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- **5** Kernel Functions

Mathematical characterisation Visualizing kernels in input space

- 6 Kernel Algorithms
- 7 Kernels in Complex Structured Data

Kernels in Complex Structured Data

How to visualize?

- Choose a point in input space p_0
- Calculate the distance from another point x to p_0 in the feature space:

$$\begin{aligned} \|\phi(p_0) - \phi(x)\|_F^2 &= \langle \phi(p_0) - \phi(x), \phi(p_0) - \phi(x) \rangle_F \\ &= \langle \phi(p_0), \phi(p_0) \rangle_F + \langle \phi(x), \phi(x) \rangle \\ &- 2 \langle \phi(p_0), \phi(x) \rangle_F \\ &= k(p_0, p_0) + k(x, x) - 2k(p_0, x) \end{aligned}$$

• Plot
$$f(x) = \|\phi(p_0) - \phi(x)\|_F^2$$

A Kernel Pattern Analysis Algorithm

Kernel Functions

Mathematic

Visualizing kernels in input space

Kernel Algorithms

Kernels in Complex Structured Data

How to visualize?

- Choose a point in input space p_0
- Calculate the distance from another point x to p_0 in the feature space:

$$\begin{split} \|\phi(p_0) - \phi(x)\|_F^2 &= \langle \phi(p_0) - \phi(x), \phi(p_0) - \phi(x) \rangle_F \\ &= \langle \phi(p_0), \phi(p_0) \rangle_F + \langle \phi(x), \phi(x) \rangle_F \\ &- 2 \langle \phi(p_0), \phi(x) \rangle_F \\ &= k(p_0, p_0) + k(x, x) - 2k(p_0, x) \end{split}$$

• Plot
$$f(x) = \|\phi(p_0) - \phi(x)\|_F^2$$

A Kernel Pattern Analysis Algorithm

Kernel Functions

Mathematic

Visualizing kernels in input space

Kernel Algorithms

Kernels in Complex Structured Data

How to visualize?

- Choose a point in input space p_0
- Calculate the distance from another point x to p_0 in the feature space:

$$\begin{split} \|\phi(p_0) - \phi(x)\|_F^2 &= \langle \phi(p_0) - \phi(x), \phi(p_0) - \phi(x) \rangle_F \\ &= \langle \phi(p_0), \phi(p_0) \rangle_F + \langle \phi(x), \phi(x) \rangle_F \\ &- 2 \langle \phi(p_0), \phi(x) \rangle_F \\ &= k(p_0, p_0) + k(x, x) - 2k(p_0, x) \end{split}$$

• Plot $f(x) = \|\phi(p_0) - \phi(x)\|_F^2$

The Kernel Approach to Machine

A Kernel Pattern Analysis Algorithm

Kernel Function

Mathemati

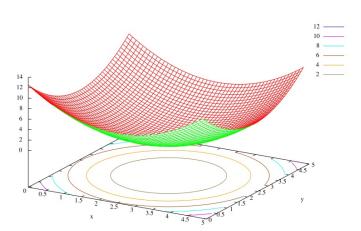
Visualizing kernels in

input space
Kernel

Kernels ir Complex Structure

Identity kernel

$$k(x,z) = \langle x, z \rangle$$



A Kernel Pattern Analysis Algorithm

Kernel Function

Mathematic

characterisation

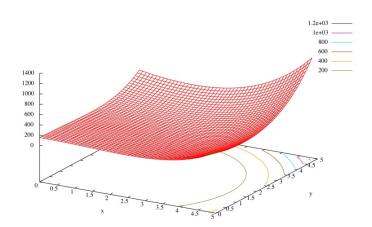
Visualizing kernels in input space

Kernel

Kernels in Complex Structure

Quadratic kernel (1)

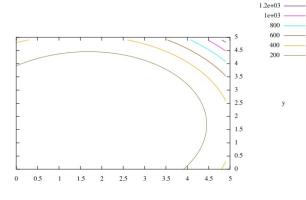
$$k(x,z) = \langle x, z \rangle^2$$



Visualizing kernels in input space

Identity kernel (2)

$$k(x,z) = \langle x, z \rangle^2$$



800 600

200

y

The Kernel Approach to Machine

A Kernel Pattern Analysis Algorithm

Kernel Function

Mathematic

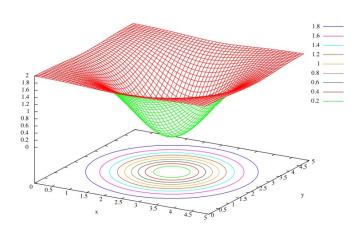
Visualizing kernels in input space

Kernel Algorithm

Kernels in Complex Structure

Gaussian kernel

$$k(\mathbf{x}, \mathbf{z}) = e^{-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}}$$



F. González

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured

Outline

- 1 Introduction
 Motivation
- 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm
 Primal linear regression
 Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- 6 Kernel Algorithms
- 7 Kernels in Complex Structured Data

Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Means
- Distances
- Projections
- Covariance

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

- Means
- Distances
- Projections
- Covariance

The Kerne

The Kernel Approach t Machine Learning

Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Means
- Distances
- Projections
 - Covariance

F. González

Introductio

The Kerne Trick

The Kernel Approach t Machine Learning

Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Means
- Distances
- Projections
- Covariance

Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured

- Support Vector Machines
- Support Vector Regression
- Kernel Fisher Discriminant
- Kernel Perceptron

F. González

Introductio

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Support Vector Machines
- Support Vector Regression
- Kernel Fisher Discriminant
- Kernel Perceptron

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

- Support Vector Machines
- Support Vector Regression
- Kernel Fisher Discriminant
- Kernel Perceptron

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Support Vector Machines
- Support Vector Regression
- Kernel Fisher Discriminant
- Kernel Perceptron

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

- Kernel PCA
- Kernel CCA
- Kernel k-means
- Kernel SOM

Introductio

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Kernel PCA
- Kernel CCA
- Kernel k-means
- Kernel SOM

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured

- Kernel PCA
- Kernel CCA
- Kernel k-means
- Kernel SOM

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

- Kernel PCA
- Kernel CCA
- Kernel k-means
- Kernel SOM

F. González

Introduction

The Kerne Trick

The Kernel Approach t Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithm

Kernels in Complex Structured

Outline

- 1 Introduction
 Motivation
 - 2 The Kernel Trick Mapping the input space to the feature space Calculating the dot product in the feature space
- 3 The Kernel Approach to Machine Learning
- 4 A Kernel Pattern Analysis Algorithm Primal linear regression Dual linear regression
- 6 Kernel Functions Mathematical characterisation Visualizing kernels in input space
- **6** Kernel Algorithms
- 7 Kernels in Complex Structured Data

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithm

Kernels in Complex Structured Data

Kernels in complex structured data

- Since kernel methods do not require an attribute-based representation of objects, it is possible to perform learning over complex structured data (or unstructured data)
- We only need to define a dot product operation (similarity, dissimilarity measure)
- Examples:
 - Strings
 - Texts
 - Trees
 - Graphs

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithm

Kernels in Complex Structured Data

Kernels in complex structured data

- Since kernel methods do not require an attribute-based representation of objects, it is possible to perform learning over complex structured data (or unstructured data)
- We only need to define a dot product operation (similarity, dissimilarity measure)
- Examples:
 - Strings
 - Texts
 - Trees
 - Graphs

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithm

Kernels in Complex Structured Data

Kernels in complex structured data

- Since kernel methods do not require an attribute-based representation of objects, it is possible to perform learning over complex structured data (or unstructured data)
- We only need to define a dot product operation (similarity, dissimilarity measure)
- Examples:
 - Strings
 - Texts
 - Trees
 - Graphs

Introduction

The Kerne Trick

The Kernel Approach to Machine Learning

A Kernel Pattern Analysis Algorithm

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured How to do symbolic regression?

$$\Sigma = \{A,\,C,\,G,\,T\}$$

$$\begin{array}{ccccc} f: & \Sigma^d & \rightarrow & \mathbb{R} \\ & ACGTA & \mapsto & 10.0 \\ & GTCCA & \mapsto & 11.3 \\ & GGTAC & \mapsto & 1.0 \\ & CCTGA & \mapsto & 4.5 \\ & \vdots & \vdots & \vdots \end{array}$$

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured Data

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - a function that measures string similarity
 - higher value for similar strings, smaller value for different strings

•
$$k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n cqual(s_i, t_i)$$

 $cqual(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$

- k(ACTAG, CCTCG) = ?
- Is it a kernel?

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - a function that measures string similarity
 - higher value for similar strings, smaller value for different strings
 - $k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n cqual(s_i, t_i)$ • $equal(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$
- k(ACTAG, CCTCG) = ?
- Is it a kernel?

Kernels in Complex Structured Data

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - · a function that measures string similarity
 - higher value for similar strings, smaller value for different strings

•
$$k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n equal(s_i, t_i)$$

 $equal(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$

- k(ACTAG, CCTCG) = ?
- Is it a kernel?

Kernel Function

Kernel Algorithms

Kernels in Complex Structured Data

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - · a function that measures string similarity
 - higher value for similar strings, smaller value for different strings

•
$$k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n equal(s_i, t_i)$$

 $equal(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$

- k(ACTAG, CCTCG) = ?
- Is it a kernel?

Kernels in Complex Structured Data

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - a function that measures string similarity
 - higher value for similar strings, smaller value for different strings

•
$$k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n equal(s_i, t_i)$$

 $equal(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$

- k(ACTAG, CCTCG) = ?
- Is it a kernel?

Kernels in Complex Structured Data

Solution

$$k: \Sigma^d \times \Sigma^d \to \mathbb{R}$$

- Use the kernel along with a kernel learning regression algorithm to find the regression function
- What is a good candidate for k?
 - a function that measures string similarity
 - higher value for similar strings, smaller value for different strings

•
$$k(s_1 \dots s_d, t_1 \dots t_d) = \sum_{i=1}^n equal(s_i, t_i)$$

 $equal(s_i, t_i) = \begin{cases} 1 & \text{if } s_i = t_i \\ 0 & \text{otherwise} \end{cases}$

- k(ACTAG, CCTCG) = ?
- Is it a kernel?

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel Algorithm

Kernels in Complex Structured

Induced Feature Space

What is the feature space induced by k?

$$\phi: \Sigma^{a} \to \mathbb{R}^{4a}$$

$$s_{1} \dots s_{d} \mapsto (x_{1}^{1}, \dots, x_{4}^{1}, x_{1}^{2}, \dots, x_{4}^{2}, \dots, x_{1}^{d}, \dots, x_{4}^{d})$$

$$(x_{1}^{j}, \dots, x_{4}^{j}) = \begin{cases} (1, 0, 0, 0) & \text{if } s_{j} = 'A' \\ (0, 1, 0, 0) & \text{if } s_{j} = 'C' \\ (0, 0, 1, 0) & \text{if } s_{j} = 'C' \end{cases}$$

Kernel Functions

Kernel Algorithms

Kernels in Complex Structured

Induced Feature Space

- What is the feature space induced by k?
- •

$$\phi: \Sigma^{d} \to \mathbb{R}^{4d}$$

$$s_{1} \dots s_{d} \mapsto (x_{1}^{1}, \dots, x_{4}^{1}, x_{1}^{2}, \dots, x_{4}^{2}, \dots, x_{1}^{d}, \dots, x_{4}^{d})$$

$$(x_{1}^{j}, \dots, x_{4}^{j}) = \begin{cases} (1, 0, 0, 0) & \text{if } s_{j} = 'A' \\ (0, 1, 0, 0) & \text{if } s_{j} = 'C' \\ (0, 0, 1, 0) & \text{if } s_{j} = 'G' \\ (0, 0, 0, 1) & \text{if } s_{j} = 'T' \end{cases}$$

A Kernel Pattern Analysis Algorithm

Kernel Function

Kernel

Kernels in Complex Structured

References

Shawe-Taylor, J. and Cristianini, N. 2004 Kernel Methods for Pattern Analysis. Cambridge University Press.