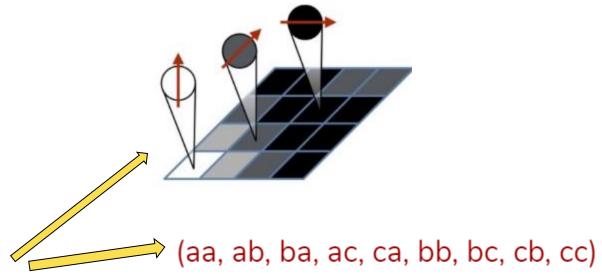
Tensor Networks for Visual and Textual Sneyder Gantiva, Diego Useche Classification Director: Prof. Eabio Gonzalez

UNIVERSIDAD NACIONA
DE COLOMBIA

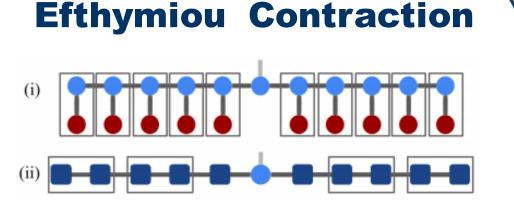

Director: Prof. Fabio Gonzalez. Masters in Systems and Computing Engineering, Universidad Nacional de Colombia.

OVERVIEW

This project consists on applying a recent physics-inspired machine learning method called Tensor Networks for visual and textual classification. We used three data sets; the MNIST data set, an Eng/Spa Words data set, and the multimodal IMDb of movie posters and plots.

$$f(\mathbf{x}) = \begin{cases} W \\ \Phi(\mathbf{x}) \end{cases}$$

$$\approx \begin{cases} \Phi \\ \Phi(\mathbf{x}) \end{cases}$$

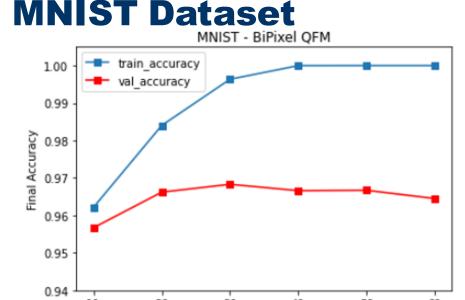

Link Presentación Youtube

MPS Learning Method

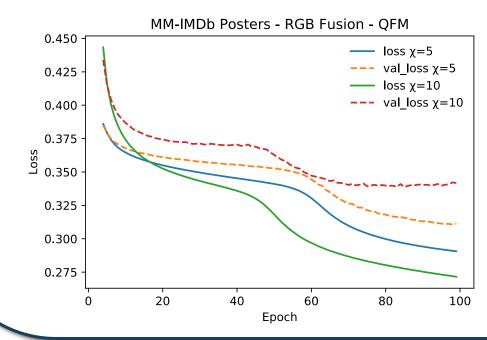
Tensor network method

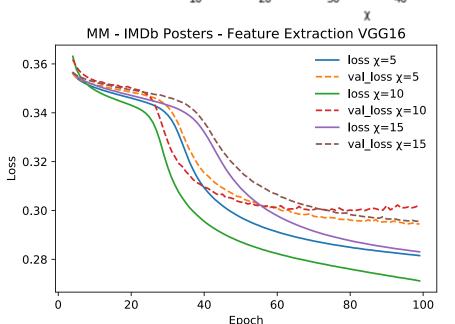
$$f(\mathbf{x})^l = \sum_{i_1, i_2, \dots, i_N} W^l_{i_1, i_2, \dots, i_N} \phi_{i_1, i_2, \dots, i_N}(\mathbf{x})$$
$$\phi_{i_1, i_2, \dots, i_N}(\mathbf{x}) = \phi_{i_1}(x_1) \otimes \phi_{i_2}(x_2) \cdots \otimes \phi_{i_N}(x_N)$$

visible index of dimension bond index of dimension m

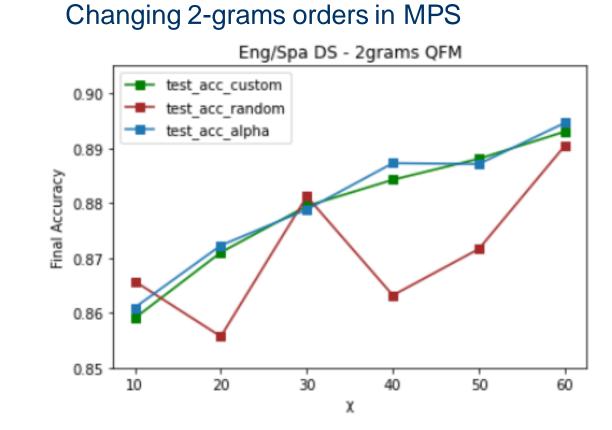


Visual Exps and Results

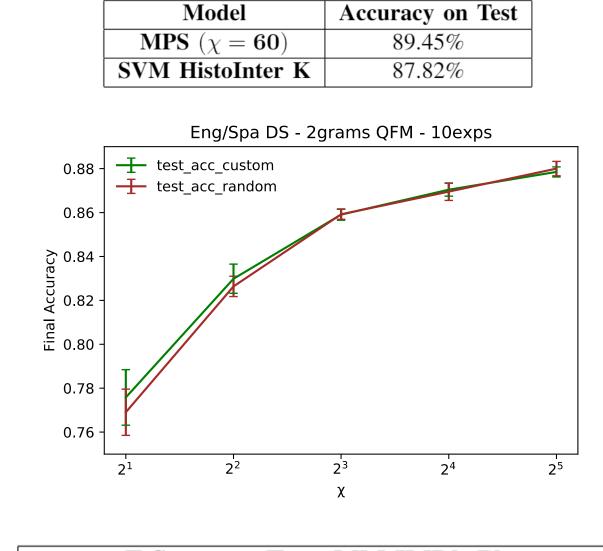

IMDb Posters


F-Score on Test: MM-IMDb Posters						
Model	macro	micro	weighted	samples		
MobileNetV2	0.0847	0.3385	0.2363	0.3453		
Fine Tuning						
RGB Fussion	0.0507	0.2144	0.1629	0.1862		
Feature	0.1106	0.2547	0.2424	0.2275		
Extraction						
VGG16						

MNIST Datacat


IMDb Posters – Learning Process

Textual Exps and Results


Eng/Spa Words Data Set

MM-IMDb Plots - Tfidf QFM 2.25 2.00 1.75 1.50 9 1.25 1.00 0.75 0.50

125 150

175 200

F-Score on Test: MM-IMDb Plots						
Model	macro	micro	weighted	samples		
MPS Tfidf	0.170	0.387	0.338	0.344		
LSTM w2v	0.266	0.478	0.434	0.471		

🖁 Quantum Feature Maps 🕃

Visual Binary Pixel

$$|\psi(x)\rangle = \begin{cases} |0\rangle & \text{if } \frac{x}{255} < 0.5\\ |1\rangle & \text{if } \frac{x}{255} > 0.5 \end{cases}$$

Visual RGB Fusion

$$X = R * 0.21 + G * 0.72 + B * 0.07$$

Visual Binary Feature

$$|\psi(x)\rangle = \begin{cases} |0\rangle & \text{if } \sigma(x) < 0.5\\ |1\rangle & \text{if } \sigma(x) > 0.5 \end{cases}$$

Textual n-gram

$$|\psi(x)\rangle = \begin{cases} |1\rangle & \text{if n-gram in text} \\ |0\rangle & \text{otherwise} \end{cases}$$

Conclusions

- MNIST: 96.83% accuracy on test data, with a bond dimension of 30.
- IMDb posters: Best f-scores obtained with the Feature Extraction VGG and MPS, still lower scores compared with usual transfer learning methods.
- Eng/Spa Words: The accuracy of test data depends on the bond, but not on the order of the 2-grams. The MPS outperforms SVM with histogram intersection kernel.
- IMDb plots: Acceptable f-scores with MPS and Tfidf QFM, still lower than a usual method based on LSTM and w2v.
- Future work: Explore the MPS implementation and feature map of Stoudenmire [1].

Main References

- [1] E. M. Stoudenmire and D. J. Schwab, "Supervised Learning withQuantum-Inspired Tensor Networks," 5 2016.
- [2] S. Efthymiou, J. Hidary, and S. Leichenauer, "TensorNetwork forMachine Learning," 6 2019.
- [3] J. Arevalo, Solorio, M. Montes-Y-Gómez, and F. A. González, "Work-shop track-ICLR 2017 GATED MULTIMODAL UNITS FOR INFORMATION FU-SION," tech. rep.

Acknowledgements: We would like to thank the seminar groups Physics and Machine Learning and the MindLab group, both seminars oriented by Prof. Fabio Gonzalez.