# Practice Problems 1 

March 15th 2021

1. Do the tutorial "Kaggle Python Tutorial on Machine Learning" (https://www.datacamp. com/courses/kaggle-python-tutorial-on-machine-learning).
2. Let $D=\left\{d_{1}, \ldots, d_{n}\right\}$ be a set of documents and $T=\left\{t_{1}, \ldots, t_{m}\right\}$ a set of terms (words). Let $T D=\left(T D_{i, j}\right)_{i=1 \ldots m, j=1 \ldots n}$ be a matrix such that $T D_{i, j}$ corresponds to the number of times the term $t_{i}$ appears in the document $d_{j}$. Also, let $l_{i}$ be the length, number of characters, of term $t_{i}$, and let $L=\left(l_{1}, \ldots, l_{m}\right)$ be a column vector. Finally, assume a process where a document $d_{j}$ is randomly chosen with uniform probability and then a term $t_{i}$, present in $d_{j}$, is randomly chosen with a probability proportional to the frequency of $t_{i}$ in $d_{j}$.

For all the following expressions you must provide:

- a mathematical expression to calculate it that includes $T D, L$, constants (scalars, vectors or matrices) and linear algebra operations
- a expression in Numpy (http://www.scipy.org) that, when evaluated, generates the requested matrix, vector or scalar (the expression must be a linear algebra expression that does not involve control structures such as for, while etc.)
- the result of evaluating the expression, assuming:

$$
T D=\left[\begin{array}{lllll}
2 & 3 & 0 & 3 & 7 \\
0 & 5 & 5 & 0 & 3 \\
5 & 0 & 7 & 3 & 3 \\
3 & 1 & 0 & 9 & 9 \\
0 & 0 & 7 & 1 & 3 \\
6 & 9 & 4 & 6 & 0
\end{array}\right] \quad L=\left[\begin{array}{l}
5 \\
2 \\
3 \\
6 \\
4 \\
3
\end{array}\right]
$$

(a) Matrix $P(T, D)$ (each position of the matrix, $P(T, D)_{i, j}$, corresponds to the joint probability of term $t_{i}$ and document $\left.d_{j}, P\left(t_{i}, d_{j}\right)\right)$
(b) Matrix $P(T \mid D)$
(c) Matrix $P(D \mid T)$
(d) Vector $P(D)$
(e) Vector $P(T)$
(f) $E[l]$ (the expected value of the random variable $l$ corresponding to the length of a randomly chosen term)
(g) $\operatorname{Var}(l)$ (the variance of $l$ )

Note: The solution to these problems must be presented in the form of a Jupyter notebook (Jupyter notebooks).

