Computational Complexity

Fabio A. González QCP 2020-2

Universidad Nacional de Colombia

1. The analysis of computational problems

- what is a computational problem?
- How to design algorithms to solve particular Computational problems?
- Is the algorithm correct? (effectiveness)

Analysis and testing, formal methods
Design of . How much resources the algorithm requires? (efficiency)
Algorithms. time, space, energy

- which design alternatives do we have? brute force, greedy, dynamic progr. etc.
- what are the minimal we require to solve a computational problem?

Computational complexity theory
2. How to quantify computational resources
def insertion_sort(A): Time $(n) \in O\left(n^{2}\right)$ - Counting the type and number executed

- This depends on the input
- length (n)
- Order:
- Worst case
- Best case
- Average case
- Characterize the behavior of time (n) how it grows with n.
- Asymptotic notation

$$
\begin{aligned}
& O(g(n))=\left\{f(n) \mid \exists c \in R^{+}, n_{0} \in \mathbb{N} \quad \forall n \geqslant n_{0} f(n) \leq c g(n)\right\} \\
& f(n) \in O(g(n)) \\
& f(n)=O(g(n))
\end{aligned}
$$

$$
a_{d} n^{d}+a_{d+1} n^{d-1} \cdots a_{0} n^{0} \in O\left(n^{d}\right)
$$

$$
\begin{aligned}
& \log n \in O(n) \\
& n \log n \in O\left(n^{2}\right) \quad n \log n+n^{2} \in O\left(n^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& O(1)\{j=1 \\
& \begin{array}{l}
\text { while } j<\operatorname{len}(A):
\end{array} \quad O\left(n^{2}\right)=\sum_{j=1}^{n-1} O(n)+O(j) \\
& O\left(n^{2}\right) \int O(1)\left\{\begin{array}{l}
\text { key }=A[j] \\
i=j-1
\end{array}\right.
\end{aligned}
$$

3. Computational complexity

- If is the study of the time and space resources required to solve computational problems.
- what's the time of the best algorithm to sort?

Sorting using comparisons $\Rightarrow \operatorname{Time}(n)=\Omega(n \log n)$

what's the minimum number of comparisons I have to do to sort an array of n elements?

- \#permutations $n!$ = leaves of the tree
- I want the tree with minimum height \Rightarrow balanced tree
- what's the minimum height of a tire e with n leaves? $\Rightarrow \log _{2} n$

4. Decision problems

- It is a problem where the answer is yes or no.
- A language L over the alphabet Σ is a subset of Σ^{*} (all finite strings over Σ).

$$
\begin{aligned}
& \text { If } \sum=\{0,1\} \quad \sum^{*}=\{0,1,10,01, \ldots\} \\
& L=\{0,10,100,110, \ldots\} \quad \text { (even numbers) }
\end{aligned}
$$

- Decision problems can be encoded as languages:

Primality problem $\longleftrightarrow \mathcal{L} \subseteq\{0,1\}^{*} \mathcal{L}=\left\{n \left\lvert\, \begin{array}{c}n \text { represents } a \\ \text { prime number }\end{array}\right.\right\}$

- A language L is decided by a Turing machine if the machine is able to decide if an input on its tape belongs to the language or $\begin{aligned} & \text { Decision } \\ & \text { halts in } q_{y} \rightarrow \text { yes } \\ & \text { halts in } q_{n} \rightarrow \text { no }\end{aligned}$ not.
- We say that a problem is in $\operatorname{Time}(f(n))$ if there exists a Turing Machine which decides \mathcal{L} in time $O(f(n))$ (where n is the size of the input)

5. P and NP

- $P=$ The collection of languages that can be decided in $\operatorname{Time}^{(}\left(n^{k}\right)$ tor some $K . \in \mathbb{N}$

Factoring problem: Given an integer m and $l<m$, does m have a nontrivial factor léss than l. witness: a number $1<x<l$ such that x divides m

NP $=$ The collection of problems/languages (c) such that there is a Turing machine M :

1) If $x \in L$ there exist a witness w such that M halts in q_{y} after a time polynomial in $|x|$ with an ${ }^{\text {ty }}$ input " x-w"
2) It $x \notin L$ for all the candidate witnesses w the machine halts in q_{n} after a time polynom. in $|x|$ with an input " x - w "

$$
N P \equiv \text { Non-deterministic Polynomial }
$$

- Sat: Given a propositional formula $F\left(\right.$ e.g. $\left(x_{1} \vee x_{2}\right) \wedge\left(-x_{1} \vee x_{3}\right)^{\prime \prime}$, is there a set of values for $x_{1}, x_{2} \cdots x_{n}$ such that $F\left(x_{1} \ldots x_{n}\right)=$ True
- Sat E NP? yes. witness: set of values for

$$
x_{1}, \ldots x_{n}
$$

Non-deterministic Turing Machine

$$
\begin{gathered}
\left.\begin{array}{|l}
x_{1}=0 \text { or } 1 \\
\downarrow \\
x_{2}=0 \text { or } 1 \\
\downarrow \\
\vdots \\
x_{n}=0 \text { or } 1 \\
F\left(x_{1}, \ldots\right.
\end{array} x_{n}\right)=\text { True? }
\end{gathered}
$$

6. Hamiltonian and Euler cycle problem

Euler Theorem: A connected. graph has an Euler cycle if and only if every vertex has an even number of edges incident over it
Hamiltonian cycle:
Euler cycle:
Is a sequence of vertices $V_{1}, V_{2} \ldots V_{m} V_{1}$ is a sequence of vertices $V_{1}, V_{2} \ldots V_{m}$ w_{1} th $\left(v_{i}, v_{i+1}\right)$ an edge such with $\left(v_{i}, v_{i+1}\right)$ an edge such that it visit's all the vertices that it visit's all the edges exactly once (except for the first exactly once and last vertex)

7. Problem Reduction

- A language B is said to be reducible to another langrage A if there is a TM operating in polynomial time that given an input x it outputs $R(x)$ and $x \in B \Longleftrightarrow R(x) \in A$.
- A problem P is .complete with respect to a complexity class if every language in the complexity class con be reduced to P.
- NP-complete is the set of problems which are complete with respect to Does $x \in B$

8. NP-complete problems

- Sat
- 3-SAT (Propositions wit terms with at most 3 variable)
- CSAT (satisfactibility of boolean circuits)
- clique
- Vertex Cover
- Hamiltonian Cycle
- 0-1 integer programming
- TSP: Travel salesman problem.

8. Hierarchy of Complexity Classes
strict

$$
\begin{aligned}
\begin{array}{ll}
A, B \in P & \text { Does } x \in B \\
x_{1} \in A \\
x_{2} \notin A
\end{array} & \begin{array}{c}
\text { Compote } R(x)
\end{array} \quad R(x)=\left\{\begin{array}{ll}
x_{1} & \text { if } x \in B \\
x_{2} & \text { if } x \notin B
\end{array} \quad O\left(n^{k}\right)\right. \\
& \frac{R(x) \in A}{\text { Les or not }} \quad O\left(n^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{|\psi\rangle}=\alpha\left|v_{0}\right\rangle+\beta\left|v_{1}\right\rangle \\
& =\cos \frac{\theta}{2}\left|V_{0}\right\rangle+\sin \frac{\theta}{2} e^{i \gamma}\left|V_{1}\right\rangle \text {. } \\
& \operatorname{Spread}_{V_{0}, V_{L}}(|\psi\rangle)=\left|\cos \frac{\theta}{2}\right|+\left|\sin \frac{\theta}{2}\right| \leq \underline{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& \left.|0\rangle=\frac{1}{\sqrt{2}}(1+\rangle+|-\rangle\right) \\
& \xrightarrow[|c|]{10\rangle} \\
& |\psi\rangle=|0\rangle \quad\left[\begin{array}{l}
1+\rangle=\frac{1}{\sqrt{2}}(|0\rangle \mp|1\rangle), ~ \\
1 \rightarrow\rangle
\end{array}\right. \\
& =\frac{1}{\sqrt{2}}(|\psi\rangle \bar{\Psi}|\psi+\rangle)
\end{aligned}
$$

$$
\begin{aligned}
& u \quad u v^{+}=u^{+} u=1 \\
& u|\psi\rangle=\underline{a}|\psi\rangle+\text { +q. }|a|=1 \\
& u=\lambda_{1}\left|v_{1}\right\rangle\left\langle v_{1}\right|+\lambda_{2}\left|v_{2}\right\rangle\left\langle v_{2}\right| \\
& \left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1 . \\
& u\left|v_{1}\right\rangle=\lambda_{1}\left|v_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left|q_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle \quad\left|q_{1}\right\rangle \otimes\left|q_{2}\right\rangle \otimes\left|q_{3}\right\rangle \\
& \left|q_{2}\right\rangle=\alpha_{2}|0\rangle+\beta_{2}|1\rangle+ \\
& \left|q_{3}\right\rangle=\alpha_{3}|0\rangle+\beta_{3}|1\rangle \quad\left|q_{1}^{\prime}\right\rangle \otimes\left|q_{2}^{\prime}\right\rangle \otimes\left|q_{3}^{\prime}\right\rangle \\
& |\psi\rangle \rightarrow|\psi\rangle<\psi \mid=\rho \quad \text { 1. Incertidumbre } \\
& \text { cuantica. } \\
& \text { superposicion. } \\
& \text { 2. Incerhdumbre } \\
& {\left[\begin{array}{lll}
\lambda_{1} & \\
& \lambda_{2} & \\
& & 0
\end{array}\right]} \\
& \text { clasica. } \\
& \rho \quad l_{A}=\operatorname{tr}_{B}(l) \\
& \varepsilon(e)=\operatorname{tr}\left(\rho \log _{2} e\right) \\
& \rho_{B}=\operatorname{tr}_{A}(l) \\
& \varepsilon(e)=0 \Rightarrow \text { Pure } \\
& \varepsilon(e) \neq 0 \Rightarrow \text { Mixed } \\
& \operatorname{Er}\left[\begin{array}{llll}
a_{11} & & & \\
& a_{22} & & \\
& & a_{n n}
\end{array}\right]
\end{aligned}
$$ if C_{A} is Mixed or C_{B} is Mixed then A is Entangled with B

$$
\operatorname{tr}_{A}(A \otimes B)=\left[\frac{a_{11}[B]}{\vdots}\left[\begin{array}{l}
a_{12}[B] \\
a_{n 1}[B]
\end{array}\right]=\operatorname{tr}(A) B\right.
$$

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

