2.7 - Vanishing gradients
Contents
2.7 - Vanishing gradients¶
!wget -nc --no-cache -O init.py -q https://raw.githubusercontent.com/rramosp/2021.deeplearning/main/content/init.py
import init; init.init(force_download=False);
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from IPython.display import Image
%matplotlib inline
import tensorflow as tf
tf.__version__
'2.1.0'
forward/back propagation calculations https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c
Vanishing gradient example: https://github.com/harinisuresh/VanishingGradient/blob/master/Vanishing%20Gradient%20Example.ipynb
https://adventuresinmachinelearning.com/vanishing-gradient-problem-tensorflow/
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from tensorflow import keras
%matplotlib inline
Visualizing and understanding vanishing gradients¶
Make sure you understand well the backpropagation algorithm. You may perform by hand the calculations as illustrated here to consolidate your understanding.
We will be using three activation functions. Observe under which what values each function’s gradient becomes negligible (very near zero)
sigmoid¶
z = np.linspace(-10,10,100)
sigm = lambda z: 1/(1+np.exp(-z))
dsigm = lambda z: sigm(z)*(1-sigm(z))
plt.plot(z, sigm(z), lw=5, label="sigm")
plt.plot(z, dsigm(z), lw=5, label="grad sigm")
plt.grid()
plt.axvline(0, color="black");
plt.axhline(0, color="black");
plt.legend()
<matplotlib.legend.Legend at 0x7fb43fbffeb8>
tanh¶
z = np.linspace(-10,10,100)
tanh = lambda z: (np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z))
dtanh = lambda z: 1 - tanh(z)**2
plt.plot(z, tanh(z), lw=5, label="tanh")
plt.plot(z, dtanh(z), lw=5, label="grad tanh")
plt.grid()
plt.axvline(0, color="black");
plt.axhline(0, color="black");
plt.legend()
<matplotlib.legend.Legend at 0x7fb43fd2ef60>
ReLU (Rectified Linear Unit)¶
z = np.linspace(-2,2,100)
relu = np.vectorize(lambda z: z if z>0 else 0.)
drelu = np.vectorize(lambda z: 1 if z>0 else 0.)
plt.plot(z, relu(z), lw=5, label="relu")
plt.plot(z, drelu(z), lw=5, label="grad relu")
plt.grid()
plt.axvline(0, color="black");
plt.axhline(0, color="black");
plt.legend()
<matplotlib.legend.Legend at 0x7fb43fe39780>
Leaky ReLU (Rectified Linear Unit)¶
z = np.linspace(-2,2,100)
relu = np.vectorize(lambda z: z if z>0 else .1*z)
drelu = np.vectorize(lambda z: 1 if z>0 else .1)
plt.plot(z, relu(z), lw=5, label="relu")
plt.plot(z, drelu(z), lw=5, label="grad relu")
plt.grid();
plt.axvline(0, color="black");
plt.axhline(0, color="black");
plt.legend()
<matplotlib.legend.Legend at 0x7fb43fec0dd8>
load sample MNIST data as customary¶
mnist = pd.read_csv("local/data/mnist1.5k.csv.gz", compression="gzip", header=None).values
X=mnist[:,1:785]/255.
y=mnist[:,0]
print("dimension de las imagenes y las clases", X.shape, y.shape)
dimension de las imagenes y las clases (1500, 784) (1500,)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2)
X_train = X_train
X_test = X_test
y_train_oh = np.eye(10)[y_train]
y_test_oh = np.eye(10)[y_test]
print(X_train.shape, y_train_oh.shape)
(1200, 784) (1200, 10)
from tensorflow.keras import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, Flatten, concatenate, Input
from tensorflow.keras.backend import clear_session
from tensorflow import keras
A basic multi layered dense model¶
observe that the function allows us to parametrize the number of hidden layers and their activation function
!rm -rf log
def get_model(input_dim=784, output_dim=10, num_hidden_layers=6, hidden_size=10, activation="relu"):
model = Sequential()
model.add(Dense(hidden_size, activation=activation, input_dim=input_dim, name="Layer_%02d_Input"%(0)))
for i in range(num_hidden_layers):
model.add(Dense(hidden_size, activation=activation, name="Layer_%02d_Hidden"%(i+1)))
model.add(Dense(output_dim, activation="softmax", name="Layer_%02d_Output"%(num_hidden_layers+1)))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
SIGMOID activation¶
model = get_model(num_hidden_layers=10, activation="sigmoid")
!rm -rf log/sigmoid
tb_callback = keras.callbacks.TensorBoard(log_dir='./log/sigmoid', histogram_freq=1, write_graph=True, write_images=True)
model.fit(X_train, y_train_oh, epochs=30, batch_size=32, validation_data=(X_test, y_test_oh), callbacks=[tb_callback])
Train on 1200 samples, validate on 300 samples
Epoch 1/30
1200/1200 [==============================] - 1s 528us/sample - loss: 2.3860 - accuracy: 0.0933 - val_loss: 2.3674 - val_accuracy: 0.0967
Epoch 2/30
1200/1200 [==============================] - 0s 124us/sample - loss: 2.3391 - accuracy: 0.0933 - val_loss: 2.3356 - val_accuracy: 0.0967
Epoch 3/30
1200/1200 [==============================] - 0s 129us/sample - loss: 2.3174 - accuracy: 0.1050 - val_loss: 2.3181 - val_accuracy: 0.0733
Epoch 4/30
1200/1200 [==============================] - 0s 102us/sample - loss: 2.3073 - accuracy: 0.1083 - val_loss: 2.3097 - val_accuracy: 0.0733
Epoch 5/30
1200/1200 [==============================] - 0s 106us/sample - loss: 2.3023 - accuracy: 0.1025 - val_loss: 2.3059 - val_accuracy: 0.1367
Epoch 6/30
1200/1200 [==============================] - 0s 97us/sample - loss: 2.3006 - accuracy: 0.1208 - val_loss: 2.3029 - val_accuracy: 0.1367
Epoch 7/30
1200/1200 [==============================] - 0s 95us/sample - loss: 2.2994 - accuracy: 0.1208 - val_loss: 2.3017 - val_accuracy: 0.1367
Epoch 8/30
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2993 - accuracy: 0.1208 - val_loss: 2.3029 - val_accuracy: 0.1367
Epoch 9/30
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 10/30
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3008 - val_accuracy: 0.1367
Epoch 11/30
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3020 - val_accuracy: 0.1367
Epoch 12/30
1200/1200 [==============================] - 0s 90us/sample - loss: 2.2994 - accuracy: 0.1208 - val_loss: 2.3006 - val_accuracy: 0.1367
Epoch 13/30
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 14/30
1200/1200 [==============================] - 0s 96us/sample - loss: 2.2993 - accuracy: 0.1208 - val_loss: 2.3024 - val_accuracy: 0.1367
Epoch 15/30
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.2997 - val_accuracy: 0.1367
Epoch 16/30
1200/1200 [==============================] - 0s 77us/sample - loss: 2.2994 - accuracy: 0.1208 - val_loss: 2.3006 - val_accuracy: 0.1367
Epoch 17/30
1200/1200 [==============================] - 0s 85us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 18/30
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3006 - val_accuracy: 0.1367
Epoch 19/30
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3017 - val_accuracy: 0.1367
Epoch 20/30
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 21/30
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 22/30
1200/1200 [==============================] - 0s 83us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 23/30
1200/1200 [==============================] - 0s 74us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3011 - val_accuracy: 0.1367
Epoch 24/30
1200/1200 [==============================] - 0s 96us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3023 - val_accuracy: 0.1367
Epoch 25/30
1200/1200 [==============================] - 0s 94us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3006 - val_accuracy: 0.1367
Epoch 26/30
1200/1200 [==============================] - 0s 89us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3007 - val_accuracy: 0.1367
Epoch 27/30
1200/1200 [==============================] - 0s 92us/sample - loss: 2.2993 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 28/30
1200/1200 [==============================] - 0s 89us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3019 - val_accuracy: 0.1367
Epoch 29/30
1200/1200 [==============================] - 0s 84us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3023 - val_accuracy: 0.1367
Epoch 30/30
1200/1200 [==============================] - 0s 84us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
<tensorflow.python.keras.callbacks.History at 0x7fb426ebe710>
RELU activation¶
model = get_model(num_hidden_layers=10, activation="relu")
!rm -rf log/relu
tb_callback = keras.callbacks.TensorBoard(log_dir='./log/relu', histogram_freq=1, write_graph=True, write_images=True)
model.fit(X_train, y_train_oh, epochs=30, batch_size=32, validation_data=(X_test, y_test_oh), callbacks=[tb_callback])
Train on 1200 samples, validate on 300 samples
Epoch 1/30
1200/1200 [==============================] - 1s 595us/sample - loss: 2.2625 - accuracy: 0.1167 - val_loss: 2.1966 - val_accuracy: 0.1167
Epoch 2/30
1200/1200 [==============================] - 0s 109us/sample - loss: 2.0998 - accuracy: 0.1950 - val_loss: 2.0889 - val_accuracy: 0.2233
Epoch 3/30
1200/1200 [==============================] - 0s 99us/sample - loss: 2.0089 - accuracy: 0.1867 - val_loss: 2.0127 - val_accuracy: 0.1667
Epoch 4/30
1200/1200 [==============================] - 0s 104us/sample - loss: 1.9355 - accuracy: 0.1883 - val_loss: 1.9451 - val_accuracy: 0.1600
Epoch 5/30
1200/1200 [==============================] - 0s 113us/sample - loss: 1.8051 - accuracy: 0.2050 - val_loss: 1.8259 - val_accuracy: 0.1833
Epoch 6/30
1200/1200 [==============================] - 0s 99us/sample - loss: 1.6390 - accuracy: 0.3275 - val_loss: 1.7357 - val_accuracy: 0.2933
Epoch 7/30
1200/1200 [==============================] - 0s 105us/sample - loss: 1.4954 - accuracy: 0.3950 - val_loss: 1.6874 - val_accuracy: 0.3367
Epoch 8/30
1200/1200 [==============================] - 0s 106us/sample - loss: 1.3708 - accuracy: 0.4333 - val_loss: 1.6481 - val_accuracy: 0.3567
Epoch 9/30
1200/1200 [==============================] - 0s 104us/sample - loss: 1.2762 - accuracy: 0.4675 - val_loss: 1.5920 - val_accuracy: 0.3900
Epoch 10/30
1200/1200 [==============================] - 0s 93us/sample - loss: 1.2343 - accuracy: 0.5058 - val_loss: 1.7282 - val_accuracy: 0.4000
Epoch 11/30
1200/1200 [==============================] - 0s 79us/sample - loss: 1.1764 - accuracy: 0.5625 - val_loss: 1.5635 - val_accuracy: 0.5000
Epoch 12/30
1200/1200 [==============================] - 0s 92us/sample - loss: 1.1067 - accuracy: 0.5883 - val_loss: 1.5779 - val_accuracy: 0.5100
Epoch 13/30
1200/1200 [==============================] - 0s 93us/sample - loss: 1.0479 - accuracy: 0.6333 - val_loss: 1.5841 - val_accuracy: 0.5567
Epoch 14/30
1200/1200 [==============================] - 0s 81us/sample - loss: 0.9873 - accuracy: 0.6758 - val_loss: 1.5683 - val_accuracy: 0.5433
Epoch 15/30
1200/1200 [==============================] - 0s 81us/sample - loss: 0.9450 - accuracy: 0.6967 - val_loss: 1.6503 - val_accuracy: 0.5833
Epoch 16/30
1200/1200 [==============================] - 0s 84us/sample - loss: 0.9341 - accuracy: 0.6867 - val_loss: 1.4999 - val_accuracy: 0.5833
Epoch 17/30
1200/1200 [==============================] - 0s 75us/sample - loss: 0.8636 - accuracy: 0.7267 - val_loss: 1.6228 - val_accuracy: 0.6167
Epoch 18/30
1200/1200 [==============================] - 0s 78us/sample - loss: 0.8360 - accuracy: 0.7333 - val_loss: 1.6590 - val_accuracy: 0.6133
Epoch 19/30
1200/1200 [==============================] - 0s 88us/sample - loss: 0.7785 - accuracy: 0.7667 - val_loss: 1.8198 - val_accuracy: 0.5900
Epoch 20/30
1200/1200 [==============================] - 0s 84us/sample - loss: 0.7462 - accuracy: 0.7675 - val_loss: 1.7269 - val_accuracy: 0.6200
Epoch 21/30
1200/1200 [==============================] - 0s 74us/sample - loss: 0.7176 - accuracy: 0.7692 - val_loss: 1.6506 - val_accuracy: 0.6133
Epoch 22/30
1200/1200 [==============================] - 0s 92us/sample - loss: 0.6872 - accuracy: 0.7842 - val_loss: 1.7374 - val_accuracy: 0.6333
Epoch 23/30
1200/1200 [==============================] - 0s 93us/sample - loss: 0.6497 - accuracy: 0.7983 - val_loss: 1.8901 - val_accuracy: 0.6400
Epoch 24/30
1200/1200 [==============================] - 0s 95us/sample - loss: 0.6204 - accuracy: 0.8125 - val_loss: 1.9670 - val_accuracy: 0.6567
Epoch 25/30
1200/1200 [==============================] - 0s 98us/sample - loss: 0.5886 - accuracy: 0.8258 - val_loss: 1.9190 - val_accuracy: 0.6767
Epoch 26/30
1200/1200 [==============================] - 0s 100us/sample - loss: 0.5759 - accuracy: 0.8342 - val_loss: 1.9192 - val_accuracy: 0.6200
Epoch 27/30
1200/1200 [==============================] - 0s 96us/sample - loss: 0.5506 - accuracy: 0.8292 - val_loss: 1.9242 - val_accuracy: 0.6300
Epoch 28/30
1200/1200 [==============================] - 0s 108us/sample - loss: 0.5741 - accuracy: 0.8233 - val_loss: 2.0804 - val_accuracy: 0.6533
Epoch 29/30
1200/1200 [==============================] - 0s 122us/sample - loss: 0.5592 - accuracy: 0.8317 - val_loss: 1.9038 - val_accuracy: 0.6633
Epoch 30/30
1200/1200 [==============================] - 0s 105us/sample - loss: 0.5054 - accuracy: 0.8458 - val_loss: 1.9272 - val_accuracy: 0.6967
<tensorflow.python.keras.callbacks.History at 0x7fb4207b0630>
Leaky RELU activation¶
import tensorflow as tf
model = get_model(num_hidden_layers=10, activation=tf.nn.leaky_relu)
!rm -rf log/leaky_relu
tb_callback = keras.callbacks.TensorBoard(log_dir='./log/leaky_relu', histogram_freq=1, write_graph=True, write_images=True)
model.fit(X_train, y_train_oh, epochs=30, batch_size=32, validation_data=(X_test, y_test_oh), callbacks=[tb_callback])
Train on 1200 samples, validate on 300 samples
Epoch 1/30
1200/1200 [==============================] - 1s 562us/sample - loss: 2.2907 - accuracy: 0.1617 - val_loss: 2.2538 - val_accuracy: 0.1700
Epoch 2/30
1200/1200 [==============================] - 0s 120us/sample - loss: 2.1105 - accuracy: 0.1933 - val_loss: 2.0408 - val_accuracy: 0.1867
Epoch 3/30
1200/1200 [==============================] - 0s 112us/sample - loss: 1.9159 - accuracy: 0.2242 - val_loss: 1.8557 - val_accuracy: 0.2367
Epoch 4/30
1200/1200 [==============================] - 0s 93us/sample - loss: 1.7480 - accuracy: 0.2817 - val_loss: 1.7438 - val_accuracy: 0.2800
Epoch 5/30
1200/1200 [==============================] - 0s 86us/sample - loss: 1.5951 - accuracy: 0.3467 - val_loss: 1.6657 - val_accuracy: 0.3400
Epoch 6/30
1200/1200 [==============================] - 0s 91us/sample - loss: 1.4818 - accuracy: 0.3917 - val_loss: 1.5912 - val_accuracy: 0.3567
Epoch 7/30
1200/1200 [==============================] - 0s 97us/sample - loss: 1.3874 - accuracy: 0.4400 - val_loss: 1.5629 - val_accuracy: 0.3700
Epoch 8/30
1200/1200 [==============================] - 0s 104us/sample - loss: 1.3259 - accuracy: 0.4517 - val_loss: 1.5423 - val_accuracy: 0.4733
Epoch 9/30
1200/1200 [==============================] - 0s 85us/sample - loss: 1.2746 - accuracy: 0.4750 - val_loss: 1.5676 - val_accuracy: 0.4567
Epoch 10/30
1200/1200 [==============================] - 0s 78us/sample - loss: 1.2824 - accuracy: 0.4775 - val_loss: 1.4695 - val_accuracy: 0.4867
Epoch 11/30
1200/1200 [==============================] - 0s 80us/sample - loss: 1.2036 - accuracy: 0.5150 - val_loss: 1.4573 - val_accuracy: 0.5067
Epoch 12/30
1200/1200 [==============================] - 0s 73us/sample - loss: 1.1421 - accuracy: 0.5367 - val_loss: 1.5400 - val_accuracy: 0.4400
Epoch 13/30
1200/1200 [==============================] - 0s 80us/sample - loss: 1.1279 - accuracy: 0.5450 - val_loss: 1.4324 - val_accuracy: 0.5733
Epoch 14/30
1200/1200 [==============================] - 0s 75us/sample - loss: 1.0589 - accuracy: 0.5950 - val_loss: 1.4561 - val_accuracy: 0.5167
Epoch 15/30
1200/1200 [==============================] - 0s 76us/sample - loss: 1.0217 - accuracy: 0.5983 - val_loss: 1.4408 - val_accuracy: 0.5633
Epoch 16/30
1200/1200 [==============================] - 0s 82us/sample - loss: 1.0207 - accuracy: 0.5958 - val_loss: 1.4444 - val_accuracy: 0.5667
Epoch 17/30
1200/1200 [==============================] - 0s 89us/sample - loss: 0.9661 - accuracy: 0.6417 - val_loss: 1.4375 - val_accuracy: 0.5733
Epoch 18/30
1200/1200 [==============================] - 0s 94us/sample - loss: 0.9385 - accuracy: 0.6500 - val_loss: 1.4495 - val_accuracy: 0.5833
Epoch 19/30
1200/1200 [==============================] - 0s 94us/sample - loss: 0.9147 - accuracy: 0.6608 - val_loss: 1.4188 - val_accuracy: 0.5967
Epoch 20/30
1200/1200 [==============================] - 0s 75us/sample - loss: 0.8848 - accuracy: 0.6792 - val_loss: 1.4052 - val_accuracy: 0.6267
Epoch 21/30
1200/1200 [==============================] - 0s 73us/sample - loss: 0.8333 - accuracy: 0.7025 - val_loss: 1.4286 - val_accuracy: 0.6067
Epoch 22/30
1200/1200 [==============================] - 0s 77us/sample - loss: 0.8110 - accuracy: 0.7150 - val_loss: 1.4007 - val_accuracy: 0.6033
Epoch 23/30
1200/1200 [==============================] - 0s 78us/sample - loss: 0.7738 - accuracy: 0.7217 - val_loss: 1.3882 - val_accuracy: 0.6233
Epoch 24/30
1200/1200 [==============================] - 0s 80us/sample - loss: 0.7247 - accuracy: 0.7425 - val_loss: 1.3937 - val_accuracy: 0.5967
Epoch 25/30
1200/1200 [==============================] - 0s 72us/sample - loss: 0.7083 - accuracy: 0.7417 - val_loss: 1.3503 - val_accuracy: 0.6200
Epoch 26/30
1200/1200 [==============================] - 0s 80us/sample - loss: 0.6978 - accuracy: 0.7467 - val_loss: 1.3394 - val_accuracy: 0.6167
Epoch 27/30
1200/1200 [==============================] - 0s 75us/sample - loss: 0.6619 - accuracy: 0.7642 - val_loss: 1.3664 - val_accuracy: 0.6167
Epoch 28/30
1200/1200 [==============================] - 0s 92us/sample - loss: 0.6395 - accuracy: 0.7733 - val_loss: 1.3765 - val_accuracy: 0.6333
Epoch 29/30
1200/1200 [==============================] - 0s 92us/sample - loss: 0.6028 - accuracy: 0.7833 - val_loss: 1.3866 - val_accuracy: 0.6200
Epoch 30/30
1200/1200 [==============================] - 0s 95us/sample - loss: 0.5917 - accuracy: 0.7825 - val_loss: 1.3683 - val_accuracy: 0.6300
<tensorflow.python.keras.callbacks.History at 0x7fb424db1860>
SIGMOID activation but longer run (epochs)¶
model = get_model(num_hidden_layers=10, activation="sigmoid")
!rm -rf log/sigmoid_longrun
tb_callback = keras.callbacks.TensorBoard(log_dir='./log/sigmoid_longrun', histogram_freq=1, write_graph=True, write_images=True)
model.fit(X_train, y_train_oh, epochs=300, batch_size=32, validation_data=(X_test, y_test_oh), callbacks=[tb_callback])
Train on 1200 samples, validate on 300 samples
Epoch 1/300
1200/1200 [==============================] - 1s 651us/sample - loss: 2.4060 - accuracy: 0.1083 - val_loss: 2.4034 - val_accuracy: 0.0733
Epoch 2/300
1200/1200 [==============================] - 0s 146us/sample - loss: 2.3483 - accuracy: 0.1083 - val_loss: 2.3558 - val_accuracy: 0.0733
Epoch 3/300
1200/1200 [==============================] - 0s 95us/sample - loss: 2.3228 - accuracy: 0.1083 - val_loss: 2.3319 - val_accuracy: 0.0733
Epoch 4/300
1200/1200 [==============================] - 0s 94us/sample - loss: 2.3105 - accuracy: 0.1083 - val_loss: 2.3200 - val_accuracy: 0.0733
Epoch 5/300
1200/1200 [==============================] - 0s 93us/sample - loss: 2.3049 - accuracy: 0.1083 - val_loss: 2.3140 - val_accuracy: 0.0733
Epoch 6/300
1200/1200 [==============================] - 0s 98us/sample - loss: 2.3020 - accuracy: 0.1083 - val_loss: 2.3091 - val_accuracy: 0.0733
Epoch 7/300
1200/1200 [==============================] - 0s 103us/sample - loss: 2.3004 - accuracy: 0.1175 - val_loss: 2.3061 - val_accuracy: 0.1367
Epoch 8/300
1200/1200 [==============================] - 0s 99us/sample - loss: 2.2997 - accuracy: 0.1208 - val_loss: 2.3052 - val_accuracy: 0.1367
Epoch 9/300
1200/1200 [==============================] - 0s 89us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3035 - val_accuracy: 0.1367
Epoch 10/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2993 - accuracy: 0.1208 - val_loss: 2.3022 - val_accuracy: 0.1367
Epoch 11/300
1200/1200 [==============================] - 0s 76us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3025 - val_accuracy: 0.1367
Epoch 12/300
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3021 - val_accuracy: 0.1367
Epoch 13/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.3020 - val_accuracy: 0.1367
Epoch 14/300
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 15/300
1200/1200 [==============================] - 0s 80us/sample - loss: 2.2994 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 16/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2985 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 17/300
1200/1200 [==============================] - 0s 98us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.3021 - val_accuracy: 0.1367
Epoch 18/300
1200/1200 [==============================] - 0s 93us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 19/300
1200/1200 [==============================] - 0s 75us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 20/300
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3015 - val_accuracy: 0.1367
Epoch 21/300
1200/1200 [==============================] - 0s 77us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 22/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3015 - val_accuracy: 0.1367
Epoch 23/300
1200/1200 [==============================] - 0s 89us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3022 - val_accuracy: 0.1367
Epoch 24/300
1200/1200 [==============================] - 0s 85us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3016 - val_accuracy: 0.1367
Epoch 25/300
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 26/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3022 - val_accuracy: 0.1367
Epoch 27/300
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3009 - val_accuracy: 0.1367
Epoch 28/300
1200/1200 [==============================] - 0s 83us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3017 - val_accuracy: 0.1367
Epoch 29/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2992 - accuracy: 0.1208 - val_loss: 2.3021 - val_accuracy: 0.1367
Epoch 30/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3005 - val_accuracy: 0.1367
Epoch 31/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2997 - accuracy: 0.1208 - val_loss: 2.3007 - val_accuracy: 0.1367
Epoch 32/300
1200/1200 [==============================] - 0s 85us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3009 - val_accuracy: 0.1367
Epoch 33/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 34/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 35/300
1200/1200 [==============================] - 0s 77us/sample - loss: 2.2992 - accuracy: 0.1208 - val_loss: 2.3008 - val_accuracy: 0.1367
Epoch 36/300
1200/1200 [==============================] - 0s 90us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 37/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 38/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3022 - val_accuracy: 0.1367
Epoch 39/300
1200/1200 [==============================] - 0s 81us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3015 - val_accuracy: 0.1367
Epoch 40/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2992 - accuracy: 0.1208 - val_loss: 2.2998 - val_accuracy: 0.1367
Epoch 41/300
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 42/300
1200/1200 [==============================] - 0s 81us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 43/300
1200/1200 [==============================] - 0s 96us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 44/300
1200/1200 [==============================] - 0s 85us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.3009 - val_accuracy: 0.1367
Epoch 45/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3024 - val_accuracy: 0.1367
Epoch 46/300
1200/1200 [==============================] - 0s 95us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 47/300
1200/1200 [==============================] - 0s 83us/sample - loss: 2.2994 - accuracy: 0.1208 - val_loss: 2.3003 - val_accuracy: 0.1367
Epoch 48/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 49/300
1200/1200 [==============================] - 0s 82us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3015 - val_accuracy: 0.1367
Epoch 50/300
1200/1200 [==============================] - 0s 83us/sample - loss: 2.2990 - accuracy: 0.1208 - val_loss: 2.3017 - val_accuracy: 0.1367
Epoch 51/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3007 - val_accuracy: 0.1367
Epoch 52/300
1200/1200 [==============================] - 0s 77us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3006 - val_accuracy: 0.1367
Epoch 53/300
1200/1200 [==============================] - 0s 86us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 54/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3014 - val_accuracy: 0.1367
Epoch 55/300
1200/1200 [==============================] - 0s 100us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3018 - val_accuracy: 0.1367
Epoch 56/300
1200/1200 [==============================] - 0s 95us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 57/300
1200/1200 [==============================] - 0s 98us/sample - loss: 2.2991 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 58/300
1200/1200 [==============================] - 0s 79us/sample - loss: 2.2993 - accuracy: 0.1208 - val_loss: 2.3025 - val_accuracy: 0.1367
Epoch 59/300
1200/1200 [==============================] - 0s 75us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3010 - val_accuracy: 0.1367
Epoch 60/300
1200/1200 [==============================] - 0s 73us/sample - loss: 2.2992 - accuracy: 0.1208 - val_loss: 2.3007 - val_accuracy: 0.1367
Epoch 61/300
1200/1200 [==============================] - 0s 70us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3018 - val_accuracy: 0.1367
Epoch 62/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3013 - val_accuracy: 0.1367
Epoch 63/300
1200/1200 [==============================] - 0s 71us/sample - loss: 2.2989 - accuracy: 0.1208 - val_loss: 2.3015 - val_accuracy: 0.1367
Epoch 64/300
1200/1200 [==============================] - 0s 75us/sample - loss: 2.2987 - accuracy: 0.1208 - val_loss: 2.3009 - val_accuracy: 0.1367
Epoch 65/300
1200/1200 [==============================] - 0s 80us/sample - loss: 2.2988 - accuracy: 0.1208 - val_loss: 2.3012 - val_accuracy: 0.1367
Epoch 66/300
1200/1200 [==============================] - 0s 92us/sample - loss: 2.2986 - accuracy: 0.1208 - val_loss: 2.2998 - val_accuracy: 0.1367
Epoch 67/300
1200/1200 [==============================] - 0s 123us/sample - loss: 2.2981 - accuracy: 0.1208 - val_loss: 2.3011 - val_accuracy: 0.1367
Epoch 68/300
1200/1200 [==============================] - 0s 87us/sample - loss: 2.2979 - accuracy: 0.1208 - val_loss: 2.2991 - val_accuracy: 0.1367
Epoch 69/300
1200/1200 [==============================] - 0s 95us/sample - loss: 2.2965 - accuracy: 0.1208 - val_loss: 2.2994 - val_accuracy: 0.1367
Epoch 70/300
1200/1200 [==============================] - 0s 120us/sample - loss: 2.2942 - accuracy: 0.1208 - val_loss: 2.2961 - val_accuracy: 0.1367
Epoch 71/300
1200/1200 [==============================] - 0s 88us/sample - loss: 2.2903 - accuracy: 0.1208 - val_loss: 2.2911 - val_accuracy: 0.1367
Epoch 72/300
1200/1200 [==============================] - 0s 77us/sample - loss: 2.2834 - accuracy: 0.1208 - val_loss: 2.2844 - val_accuracy: 0.1367
Epoch 73/300
1200/1200 [==============================] - 0s 80us/sample - loss: 2.2721 - accuracy: 0.1892 - val_loss: 2.2724 - val_accuracy: 0.1967
Epoch 74/300
1200/1200 [==============================] - 0s 78us/sample - loss: 2.2529 - accuracy: 0.2208 - val_loss: 2.2524 - val_accuracy: 0.1867
Epoch 75/300
1200/1200 [==============================] - 0s 81us/sample - loss: 2.2274 - accuracy: 0.2167 - val_loss: 2.2272 - val_accuracy: 0.1933
Epoch 76/300
1200/1200 [==============================] - 0s 91us/sample - loss: 2.1899 - accuracy: 0.2175 - val_loss: 2.1966 - val_accuracy: 0.1900
Epoch 77/300
1200/1200 [==============================] - 0s 82us/sample - loss: 2.1599 - accuracy: 0.2125 - val_loss: 2.1768 - val_accuracy: 0.1867
Epoch 78/300
1200/1200 [==============================] - 0s 80us/sample - loss: 2.1414 - accuracy: 0.1942 - val_loss: 2.1362 - val_accuracy: 0.1867
Epoch 79/300
1200/1200 [==============================] - 0s 80us/sample - loss: 2.1016 - accuracy: 0.2142 - val_loss: 2.1332 - val_accuracy: 0.1767
Epoch 80/300
1200/1200 [==============================] - 0s 73us/sample - loss: 2.0676 - accuracy: 0.2167 - val_loss: 2.0811 - val_accuracy: 0.1900
Epoch 81/300
1200/1200 [==============================] - 0s 72us/sample - loss: 2.0350 - accuracy: 0.2158 - val_loss: 2.0669 - val_accuracy: 0.1900
Epoch 82/300
1200/1200 [==============================] - 0s 77us/sample - loss: 2.0002 - accuracy: 0.2192 - val_loss: 2.0515 - val_accuracy: 0.1900
Epoch 83/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.9843 - accuracy: 0.2192 - val_loss: 2.1011 - val_accuracy: 0.1900
Epoch 84/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.9793 - accuracy: 0.2150 - val_loss: 2.0330 - val_accuracy: 0.1867
Epoch 85/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.9727 - accuracy: 0.2200 - val_loss: 2.0690 - val_accuracy: 0.1900
Epoch 86/300
1200/1200 [==============================] - 0s 145us/sample - loss: 1.9660 - accuracy: 0.2183 - val_loss: 2.0241 - val_accuracy: 0.1900
Epoch 87/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.9452 - accuracy: 0.2183 - val_loss: 2.0296 - val_accuracy: 0.1900
Epoch 88/300
1200/1200 [==============================] - 0s 74us/sample - loss: 1.9365 - accuracy: 0.2192 - val_loss: 2.0107 - val_accuracy: 0.1800
Epoch 89/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.9346 - accuracy: 0.2175 - val_loss: 2.0179 - val_accuracy: 0.1900
Epoch 90/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.9975 - accuracy: 0.2142 - val_loss: 2.0609 - val_accuracy: 0.1800
Epoch 91/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.9717 - accuracy: 0.2133 - val_loss: 2.0486 - val_accuracy: 0.1833
Epoch 92/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.9351 - accuracy: 0.2158 - val_loss: 2.0209 - val_accuracy: 0.1833
Epoch 93/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.9267 - accuracy: 0.2183 - val_loss: 2.0260 - val_accuracy: 0.1867
Epoch 94/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.9077 - accuracy: 0.2175 - val_loss: 2.0094 - val_accuracy: 0.1833
Epoch 95/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.9248 - accuracy: 0.2142 - val_loss: 1.9952 - val_accuracy: 0.1833
Epoch 96/300
1200/1200 [==============================] - 0s 91us/sample - loss: 1.9120 - accuracy: 0.2158 - val_loss: 2.0209 - val_accuracy: 0.1833
Epoch 97/300
1200/1200 [==============================] - 0s 88us/sample - loss: 1.9041 - accuracy: 0.2175 - val_loss: 2.0068 - val_accuracy: 0.1800
Epoch 98/300
1200/1200 [==============================] - 0s 99us/sample - loss: 1.9082 - accuracy: 0.2150 - val_loss: 1.9851 - val_accuracy: 0.1833
Epoch 99/300
1200/1200 [==============================] - 0s 102us/sample - loss: 1.9112 - accuracy: 0.2142 - val_loss: 2.0040 - val_accuracy: 0.1833
Epoch 100/300
1200/1200 [==============================] - 0s 97us/sample - loss: 1.9115 - accuracy: 0.2158 - val_loss: 2.0031 - val_accuracy: 0.1833
Epoch 101/300
1200/1200 [==============================] - 0s 89us/sample - loss: 1.9033 - accuracy: 0.2158 - val_loss: 2.0025 - val_accuracy: 0.1833
Epoch 102/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.9050 - accuracy: 0.2167 - val_loss: 1.9681 - val_accuracy: 0.1867
Epoch 103/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.9134 - accuracy: 0.2125 - val_loss: 1.9681 - val_accuracy: 0.1800
Epoch 104/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.9077 - accuracy: 0.2133 - val_loss: 1.9803 - val_accuracy: 0.1767
Epoch 105/300
1200/1200 [==============================] - 0s 94us/sample - loss: 1.9369 - accuracy: 0.2108 - val_loss: 2.0576 - val_accuracy: 0.1900
Epoch 106/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.9377 - accuracy: 0.2117 - val_loss: 1.9591 - val_accuracy: 0.1900
Epoch 107/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8826 - accuracy: 0.2092 - val_loss: 1.9718 - val_accuracy: 0.2000
Epoch 108/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.8820 - accuracy: 0.2200 - val_loss: 1.9902 - val_accuracy: 0.1900
Epoch 109/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8769 - accuracy: 0.2175 - val_loss: 2.0173 - val_accuracy: 0.1933
Epoch 110/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.9608 - accuracy: 0.2017 - val_loss: 1.9729 - val_accuracy: 0.1967
Epoch 111/300
1200/1200 [==============================] - 0s 116us/sample - loss: 1.8808 - accuracy: 0.2125 - val_loss: 1.9769 - val_accuracy: 0.1833
Epoch 112/300
1200/1200 [==============================] - 0s 86us/sample - loss: 1.8805 - accuracy: 0.2150 - val_loss: 1.9790 - val_accuracy: 0.1867
Epoch 113/300
1200/1200 [==============================] - 0s 103us/sample - loss: 1.8834 - accuracy: 0.2175 - val_loss: 1.9581 - val_accuracy: 0.1900
Epoch 114/300
1200/1200 [==============================] - 0s 88us/sample - loss: 1.8809 - accuracy: 0.2175 - val_loss: 1.9681 - val_accuracy: 0.1867
Epoch 115/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.8578 - accuracy: 0.2200 - val_loss: 1.9434 - val_accuracy: 0.1967
Epoch 116/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8657 - accuracy: 0.2192 - val_loss: 1.9675 - val_accuracy: 0.1867
Epoch 117/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.8694 - accuracy: 0.2175 - val_loss: 1.9602 - val_accuracy: 0.1867
Epoch 118/300
1200/1200 [==============================] - 0s 88us/sample - loss: 1.8595 - accuracy: 0.2175 - val_loss: 1.9881 - val_accuracy: 0.1900
Epoch 119/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8951 - accuracy: 0.2150 - val_loss: 2.0302 - val_accuracy: 0.1933
Epoch 120/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8800 - accuracy: 0.2167 - val_loss: 1.9643 - val_accuracy: 0.1900
Epoch 121/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.8553 - accuracy: 0.2183 - val_loss: 1.9638 - val_accuracy: 0.1900
Epoch 122/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8545 - accuracy: 0.2183 - val_loss: 1.9543 - val_accuracy: 0.1900
Epoch 123/300
1200/1200 [==============================] - 0s 127us/sample - loss: 1.8503 - accuracy: 0.2183 - val_loss: 1.9554 - val_accuracy: 0.1933
Epoch 124/300
1200/1200 [==============================] - 0s 111us/sample - loss: 1.8555 - accuracy: 0.2183 - val_loss: 1.9528 - val_accuracy: 0.1933
Epoch 125/300
1200/1200 [==============================] - 0s 96us/sample - loss: 1.8701 - accuracy: 0.2183 - val_loss: 1.9569 - val_accuracy: 0.1933
Epoch 126/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8521 - accuracy: 0.2200 - val_loss: 1.9638 - val_accuracy: 0.1900
Epoch 127/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8495 - accuracy: 0.2200 - val_loss: 1.9522 - val_accuracy: 0.1933
Epoch 128/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8432 - accuracy: 0.2217 - val_loss: 1.9532 - val_accuracy: 0.1933
Epoch 129/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8444 - accuracy: 0.2108 - val_loss: 1.9593 - val_accuracy: 0.1933
Epoch 130/300
1200/1200 [==============================] - 0s 86us/sample - loss: 1.8852 - accuracy: 0.2158 - val_loss: 2.0278 - val_accuracy: 0.1933
Epoch 131/300
1200/1200 [==============================] - 0s 94us/sample - loss: 1.8620 - accuracy: 0.2192 - val_loss: 1.9660 - val_accuracy: 0.1900
Epoch 132/300
1200/1200 [==============================] - 0s 109us/sample - loss: 1.8459 - accuracy: 0.2208 - val_loss: 1.9659 - val_accuracy: 0.1900
Epoch 133/300
1200/1200 [==============================] - 0s 102us/sample - loss: 1.8448 - accuracy: 0.2208 - val_loss: 1.9651 - val_accuracy: 0.1900
Epoch 134/300
1200/1200 [==============================] - 0s 111us/sample - loss: 1.8442 - accuracy: 0.2208 - val_loss: 1.9660 - val_accuracy: 0.1900
Epoch 135/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.8438 - accuracy: 0.2208 - val_loss: 1.9655 - val_accuracy: 0.1900
Epoch 136/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8432 - accuracy: 0.2208 - val_loss: 1.9669 - val_accuracy: 0.1900
Epoch 137/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8430 - accuracy: 0.2208 - val_loss: 1.9678 - val_accuracy: 0.1900
Epoch 138/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.8430 - accuracy: 0.2208 - val_loss: 1.9682 - val_accuracy: 0.1900
Epoch 139/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.8407 - accuracy: 0.2075 - val_loss: 1.9602 - val_accuracy: 0.1900
Epoch 140/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.9064 - accuracy: 0.2175 - val_loss: 1.9759 - val_accuracy: 0.1867
Epoch 141/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8976 - accuracy: 0.2183 - val_loss: 1.9767 - val_accuracy: 0.1833
Epoch 142/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.8879 - accuracy: 0.2183 - val_loss: 1.9758 - val_accuracy: 0.1833
Epoch 143/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8791 - accuracy: 0.2183 - val_loss: 1.9566 - val_accuracy: 0.1933
Epoch 144/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.8941 - accuracy: 0.2167 - val_loss: 2.0898 - val_accuracy: 0.1900
Epoch 145/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8760 - accuracy: 0.2167 - val_loss: 1.9859 - val_accuracy: 0.1833
Epoch 146/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8633 - accuracy: 0.2192 - val_loss: 1.9945 - val_accuracy: 0.1900
Epoch 147/300
1200/1200 [==============================] - 0s 109us/sample - loss: 1.8580 - accuracy: 0.2208 - val_loss: 1.9748 - val_accuracy: 0.1900
Epoch 148/300
1200/1200 [==============================] - 0s 86us/sample - loss: 1.8604 - accuracy: 0.2217 - val_loss: 1.9767 - val_accuracy: 0.1900
Epoch 149/300
1200/1200 [==============================] - 0s 72us/sample - loss: 1.8514 - accuracy: 0.2217 - val_loss: 1.9815 - val_accuracy: 0.1900
Epoch 150/300
1200/1200 [==============================] - 0s 91us/sample - loss: 1.8605 - accuracy: 0.2200 - val_loss: 1.9907 - val_accuracy: 0.1900
Epoch 151/300
1200/1200 [==============================] - 0s 74us/sample - loss: 1.8762 - accuracy: 0.2167 - val_loss: 1.9933 - val_accuracy: 0.1833
Epoch 152/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.8940 - accuracy: 0.2142 - val_loss: 1.9884 - val_accuracy: 0.1800
Epoch 153/300
1200/1200 [==============================] - 0s 74us/sample - loss: 1.8605 - accuracy: 0.2142 - val_loss: 1.9949 - val_accuracy: 0.1800
Epoch 154/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.8479 - accuracy: 0.2125 - val_loss: 1.9862 - val_accuracy: 0.1867
Epoch 155/300
1200/1200 [==============================] - 0s 74us/sample - loss: 1.8471 - accuracy: 0.2217 - val_loss: 1.9922 - val_accuracy: 0.1833
Epoch 156/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8567 - accuracy: 0.2025 - val_loss: 2.0004 - val_accuracy: 0.1833
Epoch 157/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8575 - accuracy: 0.2217 - val_loss: 2.0125 - val_accuracy: 0.1867
Epoch 158/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8412 - accuracy: 0.2242 - val_loss: 1.9838 - val_accuracy: 0.1800
Epoch 159/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8577 - accuracy: 0.2192 - val_loss: 1.9833 - val_accuracy: 0.1800
Epoch 160/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8519 - accuracy: 0.2192 - val_loss: 1.9968 - val_accuracy: 0.1800
Epoch 161/300
1200/1200 [==============================] - 0s 74us/sample - loss: 1.8751 - accuracy: 0.2167 - val_loss: 1.9861 - val_accuracy: 0.1800
Epoch 162/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8681 - accuracy: 0.2183 - val_loss: 1.9815 - val_accuracy: 0.1767
Epoch 163/300
1200/1200 [==============================] - 0s 70us/sample - loss: 1.8543 - accuracy: 0.2208 - val_loss: 1.9673 - val_accuracy: 0.1900
Epoch 164/300
1200/1200 [==============================] - 0s 93us/sample - loss: 1.8358 - accuracy: 0.2225 - val_loss: 1.9659 - val_accuracy: 0.1900
Epoch 165/300
1200/1200 [==============================] - 0s 88us/sample - loss: 1.8482 - accuracy: 0.2225 - val_loss: 2.0217 - val_accuracy: 0.1900
Epoch 166/300
1200/1200 [==============================] - 0s 94us/sample - loss: 1.8488 - accuracy: 0.2217 - val_loss: 2.0187 - val_accuracy: 0.1933
Epoch 167/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8617 - accuracy: 0.2225 - val_loss: 2.0132 - val_accuracy: 0.1933
Epoch 168/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8387 - accuracy: 0.2217 - val_loss: 2.0226 - val_accuracy: 0.1900
Epoch 169/300
1200/1200 [==============================] - 0s 92us/sample - loss: 1.8397 - accuracy: 0.2092 - val_loss: 1.9586 - val_accuracy: 0.1900
Epoch 170/300
1200/1200 [==============================] - 0s 96us/sample - loss: 1.9185 - accuracy: 0.2042 - val_loss: 2.0121 - val_accuracy: 0.1800
Epoch 171/300
1200/1200 [==============================] - 0s 105us/sample - loss: 1.8928 - accuracy: 0.2192 - val_loss: 1.9718 - val_accuracy: 0.1867
Epoch 172/300
1200/1200 [==============================] - 0s 104us/sample - loss: 1.8420 - accuracy: 0.2100 - val_loss: 1.9889 - val_accuracy: 0.1900
Epoch 173/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8351 - accuracy: 0.2225 - val_loss: 1.9906 - val_accuracy: 0.1900
Epoch 174/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8286 - accuracy: 0.2225 - val_loss: 1.9779 - val_accuracy: 0.1933
Epoch 175/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.8306 - accuracy: 0.2225 - val_loss: 1.9559 - val_accuracy: 0.1933
Epoch 176/300
1200/1200 [==============================] - 0s 82us/sample - loss: 1.8241 - accuracy: 0.2225 - val_loss: 1.9723 - val_accuracy: 0.1900
Epoch 177/300
1200/1200 [==============================] - 0s 136us/sample - loss: 1.8254 - accuracy: 0.2217 - val_loss: 2.0305 - val_accuracy: 0.1900
Epoch 178/300
1200/1200 [==============================] - 0s 97us/sample - loss: 1.8396 - accuracy: 0.2217 - val_loss: 1.9988 - val_accuracy: 0.1867
Epoch 179/300
1200/1200 [==============================] - 0s 110us/sample - loss: 1.8355 - accuracy: 0.2100 - val_loss: 1.9613 - val_accuracy: 0.1867
Epoch 180/300
1200/1200 [==============================] - 0s 66us/sample - loss: 1.8311 - accuracy: 0.2117 - val_loss: 1.9697 - val_accuracy: 0.1867
Epoch 181/300
1200/1200 [==============================] - 0s 63us/sample - loss: 1.8299 - accuracy: 0.2225 - val_loss: 1.9758 - val_accuracy: 0.1900
Epoch 182/300
1200/1200 [==============================] - 0s 66us/sample - loss: 1.8364 - accuracy: 0.2208 - val_loss: 1.9917 - val_accuracy: 0.1867
Epoch 183/300
1200/1200 [==============================] - 0s 65us/sample - loss: 1.8319 - accuracy: 0.2225 - val_loss: 2.0343 - val_accuracy: 0.1833
Epoch 184/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8553 - accuracy: 0.2217 - val_loss: 1.9863 - val_accuracy: 0.1867
Epoch 185/300
1200/1200 [==============================] - 0s 87us/sample - loss: 1.8457 - accuracy: 0.2200 - val_loss: 1.9804 - val_accuracy: 0.1833
Epoch 186/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8398 - accuracy: 0.2067 - val_loss: 1.9800 - val_accuracy: 0.1867
Epoch 187/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8420 - accuracy: 0.2100 - val_loss: 1.9673 - val_accuracy: 0.1867
Epoch 188/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8277 - accuracy: 0.2225 - val_loss: 1.9874 - val_accuracy: 0.1867
Epoch 189/300
1200/1200 [==============================] - 0s 72us/sample - loss: 1.8313 - accuracy: 0.2217 - val_loss: 1.9742 - val_accuracy: 0.1867
Epoch 190/300
1200/1200 [==============================] - 0s 72us/sample - loss: 1.8240 - accuracy: 0.2225 - val_loss: 1.9724 - val_accuracy: 0.1900
Epoch 191/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8232 - accuracy: 0.2225 - val_loss: 1.9720 - val_accuracy: 0.1867
Epoch 192/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8226 - accuracy: 0.2225 - val_loss: 1.9721 - val_accuracy: 0.1867
Epoch 193/300
1200/1200 [==============================] - 0s 73us/sample - loss: 1.8224 - accuracy: 0.2142 - val_loss: 1.9728 - val_accuracy: 0.1867
Epoch 194/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.8227 - accuracy: 0.2225 - val_loss: 1.9719 - val_accuracy: 0.1867
Epoch 195/300
1200/1200 [==============================] - 0s 89us/sample - loss: 1.8223 - accuracy: 0.2233 - val_loss: 1.9797 - val_accuracy: 0.1867
Epoch 196/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.8246 - accuracy: 0.2125 - val_loss: 1.9667 - val_accuracy: 0.2000
Epoch 197/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8246 - accuracy: 0.2233 - val_loss: 1.9738 - val_accuracy: 0.1867
Epoch 198/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8242 - accuracy: 0.2225 - val_loss: 1.9749 - val_accuracy: 0.1867
Epoch 199/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8237 - accuracy: 0.2225 - val_loss: 1.9751 - val_accuracy: 0.1867
Epoch 200/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8220 - accuracy: 0.2183 - val_loss: 1.9761 - val_accuracy: 0.2000
Epoch 201/300
1200/1200 [==============================] - 0s 70us/sample - loss: 1.8220 - accuracy: 0.2167 - val_loss: 1.9754 - val_accuracy: 0.1867
Epoch 202/300
1200/1200 [==============================] - 0s 99us/sample - loss: 1.8222 - accuracy: 0.2225 - val_loss: 1.9754 - val_accuracy: 0.1867
Epoch 203/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8219 - accuracy: 0.2133 - val_loss: 1.9748 - val_accuracy: 0.1867
Epoch 204/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.8217 - accuracy: 0.2225 - val_loss: 1.9748 - val_accuracy: 0.1867
Epoch 205/300
1200/1200 [==============================] - 0s 87us/sample - loss: 1.8218 - accuracy: 0.2225 - val_loss: 1.9749 - val_accuracy: 0.1867
Epoch 206/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.8219 - accuracy: 0.2108 - val_loss: 1.9739 - val_accuracy: 0.1867
Epoch 207/300
1200/1200 [==============================] - 0s 82us/sample - loss: 1.8221 - accuracy: 0.2225 - val_loss: 1.9714 - val_accuracy: 0.1900
Epoch 208/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8219 - accuracy: 0.2175 - val_loss: 1.9731 - val_accuracy: 0.2000
Epoch 209/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8206 - accuracy: 0.2158 - val_loss: 2.0009 - val_accuracy: 0.1867
Epoch 210/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8241 - accuracy: 0.2133 - val_loss: 2.0123 - val_accuracy: 0.2033
Epoch 211/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8302 - accuracy: 0.2175 - val_loss: 1.9725 - val_accuracy: 0.1900
Epoch 212/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8232 - accuracy: 0.2208 - val_loss: 1.9676 - val_accuracy: 0.1933
Epoch 213/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8314 - accuracy: 0.2208 - val_loss: 1.9646 - val_accuracy: 0.1833
Epoch 214/300
1200/1200 [==============================] - 0s 99us/sample - loss: 1.8412 - accuracy: 0.2125 - val_loss: 1.9890 - val_accuracy: 0.1900
Epoch 215/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.8199 - accuracy: 0.2225 - val_loss: 1.9928 - val_accuracy: 0.1900
Epoch 216/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.8175 - accuracy: 0.2225 - val_loss: 1.9923 - val_accuracy: 0.1900
Epoch 217/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.8230 - accuracy: 0.2142 - val_loss: 1.9780 - val_accuracy: 0.1900
Epoch 218/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.8272 - accuracy: 0.2225 - val_loss: 1.9601 - val_accuracy: 0.1900
Epoch 219/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8187 - accuracy: 0.2217 - val_loss: 1.9708 - val_accuracy: 0.1867
Epoch 220/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.8191 - accuracy: 0.2150 - val_loss: 1.9720 - val_accuracy: 0.2067
Epoch 221/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.8210 - accuracy: 0.2175 - val_loss: 1.9725 - val_accuracy: 0.1867
Epoch 222/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.8351 - accuracy: 0.2200 - val_loss: 2.0701 - val_accuracy: 0.2067
Epoch 223/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.9326 - accuracy: 0.2208 - val_loss: 2.0633 - val_accuracy: 0.2033
Epoch 224/300
1200/1200 [==============================] - 0s 70us/sample - loss: 1.8287 - accuracy: 0.2217 - val_loss: 1.9644 - val_accuracy: 0.1867
Epoch 225/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.8126 - accuracy: 0.2225 - val_loss: 1.9478 - val_accuracy: 0.1933
Epoch 226/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.7974 - accuracy: 0.2167 - val_loss: 1.9703 - val_accuracy: 0.1933
Epoch 227/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.8058 - accuracy: 0.2233 - val_loss: 1.9449 - val_accuracy: 0.1933
Epoch 228/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.8028 - accuracy: 0.2158 - val_loss: 1.9611 - val_accuracy: 0.1933
Epoch 229/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7992 - accuracy: 0.2233 - val_loss: 1.9618 - val_accuracy: 0.1933
Epoch 230/300
1200/1200 [==============================] - 0s 87us/sample - loss: 1.7986 - accuracy: 0.2242 - val_loss: 1.9631 - val_accuracy: 0.1933
Epoch 231/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.7984 - accuracy: 0.2150 - val_loss: 1.9418 - val_accuracy: 0.2067
Epoch 232/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8031 - accuracy: 0.2183 - val_loss: 1.9612 - val_accuracy: 0.1967
Epoch 233/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.7978 - accuracy: 0.2233 - val_loss: 1.9331 - val_accuracy: 0.1933
Epoch 234/300
1200/1200 [==============================] - 0s 72us/sample - loss: 1.7962 - accuracy: 0.2108 - val_loss: 1.9264 - val_accuracy: 0.1933
Epoch 235/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.8410 - accuracy: 0.2200 - val_loss: 1.9226 - val_accuracy: 0.1933
Epoch 236/300
1200/1200 [==============================] - 0s 86us/sample - loss: 1.7978 - accuracy: 0.2092 - val_loss: 1.9689 - val_accuracy: 0.1933
Epoch 237/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.7963 - accuracy: 0.2233 - val_loss: 1.9378 - val_accuracy: 0.1933
Epoch 238/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.7936 - accuracy: 0.2233 - val_loss: 1.9287 - val_accuracy: 0.2000
Epoch 239/300
1200/1200 [==============================] - 0s 71us/sample - loss: 1.7892 - accuracy: 0.2242 - val_loss: 1.9807 - val_accuracy: 0.1933
Epoch 240/300
1200/1200 [==============================] - 0s 82us/sample - loss: 1.8068 - accuracy: 0.2233 - val_loss: 1.9606 - val_accuracy: 0.1900
Epoch 241/300
1200/1200 [==============================] - 0s 92us/sample - loss: 1.7884 - accuracy: 0.2242 - val_loss: 1.9497 - val_accuracy: 0.1933
Epoch 242/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.7857 - accuracy: 0.2242 - val_loss: 1.9479 - val_accuracy: 0.1933
Epoch 243/300
1200/1200 [==============================] - 0s 96us/sample - loss: 1.7858 - accuracy: 0.2242 - val_loss: 1.9485 - val_accuracy: 0.1933
Epoch 244/300
1200/1200 [==============================] - 0s 91us/sample - loss: 1.7861 - accuracy: 0.2242 - val_loss: 1.9502 - val_accuracy: 0.1933
Epoch 245/300
1200/1200 [==============================] - 0s 97us/sample - loss: 1.7855 - accuracy: 0.2242 - val_loss: 1.9506 - val_accuracy: 0.1933
Epoch 246/300
1200/1200 [==============================] - 0s 116us/sample - loss: 1.7857 - accuracy: 0.2167 - val_loss: 1.9504 - val_accuracy: 0.1933
Epoch 247/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7856 - accuracy: 0.2242 - val_loss: 1.9512 - val_accuracy: 0.1933
Epoch 248/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7857 - accuracy: 0.2242 - val_loss: 1.9511 - val_accuracy: 0.1933
Epoch 249/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.7857 - accuracy: 0.2242 - val_loss: 1.9519 - val_accuracy: 0.1933
Epoch 250/300
1200/1200 [==============================] - 0s 79us/sample - loss: 1.7855 - accuracy: 0.2175 - val_loss: 1.9524 - val_accuracy: 0.2100
Epoch 251/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7856 - accuracy: 0.2083 - val_loss: 1.9506 - val_accuracy: 0.1933
Epoch 252/300
1200/1200 [==============================] - 0s 100us/sample - loss: 1.7854 - accuracy: 0.2242 - val_loss: 1.9521 - val_accuracy: 0.1933
Epoch 253/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.7856 - accuracy: 0.2100 - val_loss: 1.9528 - val_accuracy: 0.1933
Epoch 254/300
1200/1200 [==============================] - 0s 102us/sample - loss: 1.7851 - accuracy: 0.2242 - val_loss: 1.9531 - val_accuracy: 0.1933
Epoch 255/300
1200/1200 [==============================] - 0s 92us/sample - loss: 1.7990 - accuracy: 0.2100 - val_loss: 1.9645 - val_accuracy: 0.2067
Epoch 256/300
1200/1200 [==============================] - 0s 89us/sample - loss: 1.7981 - accuracy: 0.2200 - val_loss: 1.9391 - val_accuracy: 0.2067
Epoch 257/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.8239 - accuracy: 0.2200 - val_loss: 1.9560 - val_accuracy: 0.1867
Epoch 258/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.7985 - accuracy: 0.2225 - val_loss: 1.9522 - val_accuracy: 0.1967
Epoch 259/300
1200/1200 [==============================] - 0s 132us/sample - loss: 1.7975 - accuracy: 0.2083 - val_loss: 1.9604 - val_accuracy: 0.1900
Epoch 260/300
1200/1200 [==============================] - 0s 100us/sample - loss: 1.8004 - accuracy: 0.2150 - val_loss: 1.9494 - val_accuracy: 0.1900
Epoch 261/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.7985 - accuracy: 0.2225 - val_loss: 1.9628 - val_accuracy: 0.1933
Epoch 262/300
1200/1200 [==============================] - 0s 84us/sample - loss: 1.8268 - accuracy: 0.2217 - val_loss: 1.9613 - val_accuracy: 0.1867
Epoch 263/300
1200/1200 [==============================] - 0s 77us/sample - loss: 1.8105 - accuracy: 0.2142 - val_loss: 1.9457 - val_accuracy: 0.2067
Epoch 264/300
1200/1200 [==============================] - 0s 72us/sample - loss: 1.8163 - accuracy: 0.2150 - val_loss: 1.9445 - val_accuracy: 0.1933
Epoch 265/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.8061 - accuracy: 0.2217 - val_loss: 1.9320 - val_accuracy: 0.1967
Epoch 266/300
1200/1200 [==============================] - 0s 82us/sample - loss: 1.8033 - accuracy: 0.2217 - val_loss: 1.9521 - val_accuracy: 0.1933
Epoch 267/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.8047 - accuracy: 0.2075 - val_loss: 1.9632 - val_accuracy: 0.1933
Epoch 268/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.8015 - accuracy: 0.2142 - val_loss: 1.9484 - val_accuracy: 0.1933
Epoch 269/300
1200/1200 [==============================] - 0s 82us/sample - loss: 1.7872 - accuracy: 0.2242 - val_loss: 1.9366 - val_accuracy: 0.1933
Epoch 270/300
1200/1200 [==============================] - 0s 94us/sample - loss: 1.7893 - accuracy: 0.2233 - val_loss: 1.9600 - val_accuracy: 0.1900
Epoch 271/300
1200/1200 [==============================] - 0s 90us/sample - loss: 1.7906 - accuracy: 0.2233 - val_loss: 1.9821 - val_accuracy: 0.1867
Epoch 272/300
1200/1200 [==============================] - 0s 105us/sample - loss: 1.8062 - accuracy: 0.2225 - val_loss: 1.9810 - val_accuracy: 0.1867
Epoch 273/300
1200/1200 [==============================] - 0s 114us/sample - loss: 1.7946 - accuracy: 0.2150 - val_loss: 1.9593 - val_accuracy: 0.2033
Epoch 274/300
1200/1200 [==============================] - 0s 124us/sample - loss: 1.7894 - accuracy: 0.2233 - val_loss: 1.9460 - val_accuracy: 0.1900
Epoch 275/300
1200/1200 [==============================] - 0s 105us/sample - loss: 1.8107 - accuracy: 0.2233 - val_loss: 1.9457 - val_accuracy: 0.1967
Epoch 276/300
1200/1200 [==============================] - 0s 87us/sample - loss: 1.7970 - accuracy: 0.2075 - val_loss: 1.9547 - val_accuracy: 0.1933
Epoch 277/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.7941 - accuracy: 0.2150 - val_loss: 1.9811 - val_accuracy: 0.2000
Epoch 278/300
1200/1200 [==============================] - 0s 87us/sample - loss: 1.7874 - accuracy: 0.2217 - val_loss: 1.9615 - val_accuracy: 0.1900
Epoch 279/300
1200/1200 [==============================] - 0s 102us/sample - loss: 1.7846 - accuracy: 0.2092 - val_loss: 1.9728 - val_accuracy: 0.1900
Epoch 280/300
1200/1200 [==============================] - 0s 98us/sample - loss: 1.7919 - accuracy: 0.2250 - val_loss: 1.9762 - val_accuracy: 0.1867
Epoch 281/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.7869 - accuracy: 0.2242 - val_loss: 1.9412 - val_accuracy: 0.1900
Epoch 282/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7851 - accuracy: 0.2133 - val_loss: 1.9423 - val_accuracy: 0.1967
Epoch 283/300
1200/1200 [==============================] - 0s 105us/sample - loss: 1.7862 - accuracy: 0.2242 - val_loss: 1.9481 - val_accuracy: 0.1900
Epoch 284/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7846 - accuracy: 0.2242 - val_loss: 1.9711 - val_accuracy: 0.1900
Epoch 285/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.7848 - accuracy: 0.2242 - val_loss: 1.9689 - val_accuracy: 0.1900
Epoch 286/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.7858 - accuracy: 0.2242 - val_loss: 1.9693 - val_accuracy: 0.1900
Epoch 287/300
1200/1200 [==============================] - 0s 80us/sample - loss: 1.7857 - accuracy: 0.2242 - val_loss: 1.9684 - val_accuracy: 0.1900
Epoch 288/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.7858 - accuracy: 0.2108 - val_loss: 1.9677 - val_accuracy: 0.2067
Epoch 289/300
1200/1200 [==============================] - 0s 85us/sample - loss: 1.7857 - accuracy: 0.2258 - val_loss: 1.9702 - val_accuracy: 0.1900
Epoch 290/300
1200/1200 [==============================] - 0s 95us/sample - loss: 1.7857 - accuracy: 0.2242 - val_loss: 1.9766 - val_accuracy: 0.1900
Epoch 291/300
1200/1200 [==============================] - 0s 88us/sample - loss: 1.7846 - accuracy: 0.2092 - val_loss: 1.9757 - val_accuracy: 0.1900
Epoch 292/300
1200/1200 [==============================] - 0s 115us/sample - loss: 1.7847 - accuracy: 0.2117 - val_loss: 1.9762 - val_accuracy: 0.1900
Epoch 293/300
1200/1200 [==============================] - 0s 81us/sample - loss: 1.7843 - accuracy: 0.2075 - val_loss: 1.9763 - val_accuracy: 0.1900
Epoch 294/300
1200/1200 [==============================] - 0s 70us/sample - loss: 1.7847 - accuracy: 0.2242 - val_loss: 1.9765 - val_accuracy: 0.1900
Epoch 295/300
1200/1200 [==============================] - 0s 78us/sample - loss: 1.7842 - accuracy: 0.2242 - val_loss: 1.9724 - val_accuracy: 0.1900
Epoch 296/300
1200/1200 [==============================] - 0s 75us/sample - loss: 1.7827 - accuracy: 0.2242 - val_loss: 1.9740 - val_accuracy: 0.1900
Epoch 297/300
1200/1200 [==============================] - 0s 86us/sample - loss: 1.7841 - accuracy: 0.2125 - val_loss: 1.9607 - val_accuracy: 0.1900
Epoch 298/300
1200/1200 [==============================] - 0s 83us/sample - loss: 1.7826 - accuracy: 0.2242 - val_loss: 1.9601 - val_accuracy: 0.1900
Epoch 299/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.7823 - accuracy: 0.2242 - val_loss: 1.9614 - val_accuracy: 0.1900
Epoch 300/300
1200/1200 [==============================] - 0s 76us/sample - loss: 1.7827 - accuracy: 0.2242 - val_loss: 1.9612 - val_accuracy: 0.1900
<tensorflow.python.keras.callbacks.History at 0x7fb4259a4550>
Experiment observations, on Tensorboard¶
What is the distribution of the weights observed as we move from the output layer to the input layer for each experiment?
Look in Tensorboard at distributions or histograms charts named
Layer_00_Input/kernel_0
,Layer_01_Hidden/kernel_0
, etc. for different layers. You should see:Gradients are usually higher at the output layer and tend to decrease as you move backwards in the network.
With sigmoid activations gradients are always low and rapidly decay from the output layer all the way to the input layer.
Relu might still have some vanishing gradient when weights are <0.
Leaky Relu would probably have constant gradients across layers.
Recall that, in the backpropagation algorithm, the gradient of the loss function \(L\) with respect to the weights at a certain layer \(W_l\) is proportional to the derivatives and the weights of previous layers:
where \(f'\) is the derivative of the activation function and \(z^{(l)}\) is the output at layer \(l\).
Do you think the sigmoid longrun would reach levels comparable to Relu or Leaky Relu? At what computational cost?
%load_ext tensorboard
%tensorboard --logdir log